[1] |
Stewart EA, Laughlin-Tommaso SK, Catherino WH, et al. Uterine fibroids[J]. Nat Rev Dis Primers, 2016,2:16043. doi: 10.1038/nrdp.2016.43.
doi: 10.1038/nrdp.2016.43
|
[2] |
De La Cruz MS, Buchanan EM. Uterine Fibroids: Diagnosis and Treatment[J]. Am Fam Physician, 2017,95(2):100-107.
|
[3] |
Pavone D, Clemenza S, Sorbi F, et al. Epidemiology and Risk Factors of Uterine Fibroids[J]. Best Pract Res Clin Obstet Gynaecol, 2018,46:3-11. doi: 10.1016/j.bpobgyn.2017.09.004.
doi: S1521-6934(17)30137-2
pmid: 29054502
|
[4] |
Voulgaris N, Papanastasiou L, Piaditis G, et al. Vitamin D and aspects of female fertility[J]. Hormones(Athens), 2017,16(1):5-21. doi: 10.14310/horm.2002.1715.
doi: 10.14310/horm.2002.1715
|
[5] |
Arslan S, Akdevelioğlu Y. The Relationship Between Female Reproductive Functions and Vitamin D[J]. J Am Coll Nutr, 2018,37(6):546-551. doi: 10.1080/07315724.2018.1431160.
doi: 10.1080/07315724.2018.1431160
|
[6] |
Ciebiera M, Ali M, Zgliczyńska M, et al. Vitamins and Uterine Fibroids: Current Data on Pathophysiology and Possible Clinical Relevance[J]. Int J Mol Sci, 2020,21(15):5528. doi: 10.3390/ijms21155528.
doi: 10.3390/ijms21155528
|
[7] |
Mohammadi R, Tabrizi R, Hessami K, et al. Correlation of low serum vitamin-D with uterine leiomyoma: a systematic review and meta-analysis[J]. Reprod Biol Endocrinol, 2020,18(1):85. doi: 10.1186/s12958-020-00644-6.
doi: 10.1186/s12958-020-00644-6
|
[8] |
Islam MS, Ciavattini A, Petraglia F, et al. Extracellular matrix in uterine leiomyoma pathogenesis: a potential target for future therapeutics[J]. Hum Reprod Update, 2018,24(1):59-85. doi: 10.1093/humupd/dmx032.
doi: 10.1093/humupd/dmx032
|
[9] |
Jayes FL, Liu B, Feng L, et al. Evidence of biomechanical and collagen heterogeneity in uterine fibroids[J]. PLoS One, 2019,14(4):e0215646. doi: 10.1371/journal.pone.0215646.
doi: 10.1371/journal.pone.0215646
|
[10] |
Aleksandrovych V, Białas M, Pasternak A, et al. Identification of uterine telocytes and their architecture in leiomyoma[J]. Folia Med Cracov, 2018,58(3):89-102. doi: 10.24425/fmc.2018.125075.
doi: 10.24425/fmc.2018.125075
pmid: 30521514
|
[11] |
Baranov VS, Osinovskaya NS, Yarmolinskaya MI. Pathogenomics of Uterine Fibroids Development[J]. Int J Mol Sci, 2019,20(24):6151. doi: 10.3390/ijms20246151.
doi: 10.3390/ijms20246151
|
[12] |
El Andaloussi A, Al-Hendy A, Ismail N, et al. Introduction of Somatic Mutation in MED12 Induces Wnt4/β-Catenin and Disrupts Autophagy in Human Uterine Myometrial Cell[J]. Reprod Sci, 2020,27(3):823-832. doi: 10.1007/s43032-019-00084-7.
doi: 10.1007/s43032-019-00084-7
|
[13] |
Crabtree JS, Jelinsky SA, Harris HA, et al. Comparison of human and rat uterine leiomyomata: identification of a dysregulated mammalian target of rapamycin pathway[J]. Cancer Res, 2009,69(15):6171-6178. doi: 10.1158/0008-5472.CAN-08-4471.
doi: 10.1158/0008-5472.CAN-08-4471
pmid: 19622772
|
[14] |
Al-Hendy A, Diamond MP, Boyer TG, et al. Vitamin D3 Inhibits Wnt/β-Catenin and mTOR Signaling Pathways in Human Uterine Fibroid Cells[J]. J Clin Endocrinol Metab, 2016,101(4):1542-1551. doi: 10.1210/jc.2015-3555.
doi: 10.1210/jc.2015-3555
pmid: 26820714
|
[15] |
Halder SK, Osteen KG, Al-Hendy A. Vitamin D3 inhibits expression and activities of matrix metalloproteinase-2 and -9 in human uterine fibroid cells[J]. Hum Reprod, 2013,28(9):2407-2416. doi: 10.1093/humrep/det265.
doi: 10.1093/humrep/det265
|
[16] |
Philips N, Samuel P, Keller T, et al. Beneficial Regulation of Cellular Oxidative Stress Effects, and Expression of Inflammatory, Angiogenic, and the Extracellular Matrix Remodeling Proteins by 1α,25-Dihydroxyvitamin D3 in a Melanoma Cell Line[J]. Molecules, 2020,25(5):1164. doi: 10.3390/molecules25051164.
doi: 10.3390/molecules25051164
|
[17] |
Ali M, Shahin SM, Sabri NA, et al. 1,25 Dihydroxyvitamin D3 Enhances the Antifibroid Effects of Ulipristal Acetate in Human Uterine Fibroids[J]. Reprod Sci, 2019,26(6):812-828. doi: 10.1177/1933719118812720.
doi: 10.1177/1933719118812720
|
[18] |
Ito I, Waku T, Aoki M, et al. A nonclassical vitamin D receptor pathway suppresses renal fibrosis[J]. J Clin Invest, 2013,123(11):4579-4594. doi: 10.1172/JCI67804.
doi: 10.1172/JCI67804
|
[19] |
Hemida MA, AbdElmoneim NA, Hewala TI, et al. Vitamin D Receptor in Breast Cancer Tissues and Its Relation to Estrogen Receptor Alpha (ER-α) Gene Expression and Serum 25-hydroxyvitamin D Levels in Egyptian Breast Cancer Patients: A Case-control Study[J]. Clin Breast Cancer, 2019,19(3):e407-e414. doi: 10.1016/j.clbc.2018.12.019.
doi: 10.1016/j.clbc.2018.12.019
|
[20] |
Ali M, Shahin SM, Sabri NA, et al. Hypovitaminosis D exacerbates the DNA damage load in human uterine fibroids, which is ameliorated by vitamin D3 treatment[J]. Acta Pharmacol Sin, 2019,40(7):957-970. doi: 10.1038/s41401-018-0184-6.
doi: 10.1038/s41401-018-0184-6
|
[21] |
Puchar A, Feyeux C, Luton D, et al. Therapeutic management of uterine fibroid tumors[J]. Minerva Ginecol, 2016,68(4):466-476.
pmid: 26698838
|
[22] |
Donnez J, Dolmans MM. Uterine fibroid management: from the present to the future[J]. Hum Reprod Update, 2016,22(6):665-686. doi: 10.1093/humupd/dmw023.
doi: 10.1093/humupd/dmw023
|
[23] |
Donnez J, Donnez O, Matule D, et al. Long-term medical management of uterine fibroids with ulipristal acetate[J]. Fertil Steril, 2016,105(1):165- 173.e4. doi: 10.1016/j.fertnstert.2015.09.032.
doi: 10.1016/j.fertnstert.2015.09.032
|
[24] |
Middelkoop MA, Bet PM, Drenth JPH, et al. Risk-efficacy balance of ulipristal acetate compared to surgical alternatives[J]. Br J Clin Pharmacol, 2021,87(7):2685-2697. doi: 10.1111/bcp.14708.
doi: 10.1111/bcp.14708
pmid: 33341097
|
[25] |
Ciebiera M, Vitale SG, Ferrero S, et al. Vilaprisan, a New Selective Progesterone Receptor Modulator in Uterine Fibroid Pharmaco-therapy-Will it Really be a Breakthrough?[J]. Curr Pharm Des, 2020,26(3):300-309. doi: 10.2174/1381612826666200127092208.
doi: 10.2174/1381612826666200127092208
|
[26] |
Charoenngam N, Holick MF. Immunologic Effects of Vitamin D on Human Health and Disease[J]. Nutrients, 2020,12(7):2097. doi: 10.3390/nu12072097.
doi: 10.3390/nu12072097
|
[27] |
Bläuer M, Rovio PH, Ylikomi T, et al. Vitamin D inhibits myometrial and leiomyoma cell proliferation in vitro[J]. Fertil Steril, 2009,91(5):1919-1925. doi: 10.1016/j.fertnstert.2008.02.136.
doi: 10.1016/j.fertnstert.2008.02.136
pmid: 18423458
|
[28] |
Ciavattini A, Delli Carpini G, Serri M, et al. Hypovitaminosis D and "small burden" uterine fibroids: Opportunity for a vitamin D supplementation[J]. Medicine(Baltimore), 2016,95(52):e5698. doi: 10.1097/MD.0000000000005698.
doi: 10.1097/MD.0000000000005698
|
[29] |
Hajhashemi M, Ansari M, Haghollahi F, et al. The effect of vitamin D supplementation on the size of uterine leiomyoma in women with vitamin D deficiency[J]. Caspian J Intern Med, 2019,10(2):125-131. doi: 10.22088/cjim.10.2.125.
doi: 10.22088/cjim.10.2.125
pmid: 31363390
|
[30] |
Arjeh S, Darsareh F, Asl ZA, et al. Effect of oral consumption of vitamin D on uterine fibroids: A randomized clinical trial[J]. Complement Ther Clin Pract, 2020,39:101159. doi: 10.1016/j.ctcp.2020.101159.
doi: 10.1016/j.ctcp.2020.101159
|
[31] |
Corachán A, Ferrero H, Escrig J, et al. Long-term vitamin D treatment decreases human uterine leiomyoma size in a xenograft animal model[J]. Fertil Steril, 2020,113(1):205-216.e4. doi: 10.1016/j.fertnstert.2019.09.018.
doi: 10.1016/j.fertnstert.2019.09.018
|
[32] |
夏维波, 章振林, 林华, 等. 维生素D及其类似物临床应用共识[J]. 中华骨质疏松和骨矿盐疾病杂志, 2018,11(1):1-19. doi: 10.3969/j.issn.1674-2591.2018.01.001.
doi: 10.3969/j.issn.1674-2591.2018.01.001
|
[33] |
Ciebiera M, Ali M, Prince L, et al. The Evolving Role of Natural Compounds in the Medical Treatment of Uterine Fibroids[J]. J Clin Med, 2020,9(5):1479. doi: 10.3390/jcm9051479.
doi: 10.3390/jcm9051479
|