国际妇产科学杂志 ›› 2022, Vol. 49 ›› Issue (1): 19-23.doi: 10.12280/gjfckx.20210694
收稿日期:
2021-07-23
出版日期:
2022-02-15
发布日期:
2022-03-02
通讯作者:
汪希鹏
E-mail:wangxipeng@xinhuamed.com.cn
基金资助:
YU Chang-qing, WANG Xi-peng△()
Received:
2021-07-23
Published:
2022-02-15
Online:
2022-03-02
Contact:
WANG Xi-peng
E-mail:wangxipeng@xinhuamed.com.cn
摘要:
卵巢癌(ovarian cancer,OC)近年发病率逐渐增高,具有高复发率、高病死率的特点,成为危害女性生命健康的主要疾病之一。目前在卵巢癌的早期检测和筛查、复发监测、治疗评估方面尚缺乏有效的检测手段。循环肿瘤DNA(circulating tumor DNA,ctDNA)是肿瘤细胞释放进入血液循环中的DNA片段,具有无创、实时、可反映肿瘤基因特征的优点。随着ctDNA检测技术的提升和对ctDNA研究的深入,ctDNA在OC早期诊断、肿瘤分子分型及治疗监测中表现出较传统组织学、血清学和影像学检测方法更明显的优势。综述ctDNA的提取和检测方法,及其在OC诊治中的最新研究进展,为OC诊治提供新思路。
于长清, 汪希鹏. 循环肿瘤DNA在卵巢癌诊治中的研究进展[J]. 国际妇产科学杂志, 2022, 49(1): 19-23.
YU Chang-qing, WANG Xi-peng. Research Progress of Circulating Tumor DNA in Diagnosis and Treatment of Ovarian Cancer[J]. Journal of International Obstetrics and Gynecology, 2022, 49(1): 19-23.
[1] |
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3):209-249. doi: 10.3322/caac.21660.
doi: 10.3322/caac.21660 |
[2] |
Torre LA, Trabert B, DeSantis CE, et al. Ovarian cancer statistics, 2018[J]. CA Cancer J Clin, 2018, 68(4):284-296. doi: 10.3322/caac.21456.
doi: 10.3322/caac.21456 |
[3] |
Stroun M, Anker P, Maurice P, et al. Neoplastic characteristics of the DNA found in the plasma of cancer patients[J]. Oncology, 1989, 46(5):318-322. doi: 10.1159/000226740.
doi: 10.1159/000226740 pmid: 2779946 |
[4] |
Corcoran RB, Chabner BA. Application of Cell-free DNA Analysis to Cancer Treatment[J]. N Engl J Med, 2018, 379(18):1754-1765. doi: 10.1056/NEJMra1706174.
doi: 10.1056/NEJMra1706174 |
[5] |
Shi J, Zhang R, Li J, et al. Size profile of cell-free DNA: A beacon guiding the practice and innovation of clinical testing[J]. Theranostics, 2020, 10(11):4737-4748. doi: 10.7150/thno.42565.
doi: 10.7150/thno.42565 |
[6] |
Fong SL, Zhang JT, Lim CK, et al. Comparison of 7 methods for extracting cell-free DNA from serum samples of colorectal cancer patients[J]. Clin Chem, 2009, 55(3):587-589. doi: 10.1373/clinchem.2008.110122.
doi: 10.1373/clinchem.2008.110122 |
[7] |
Khakoo S, Georgiou A, Gerlinger M, et al. Circulating tumour DNA, a promising biomarker for the management of colorectal cancer[J]. Crit Rev Oncol Hematol, 2018, 122:72-82. doi: 10.1016/j.critrevonc.2017.12.002.
doi: 10.1016/j.critrevonc.2017.12.002 |
[8] |
Arildsen NS, Martin de la Fuente L, Måsbäck A, et al. Detecting TP53 mutations in diagnostic and archival liquid-based Pap samples from ovarian cancer patients using an ultra-sensitive ddPCR method[J]. Sci Rep, 2019, 9(1):15506. doi: 10.1038/s41598-019-51697-6.
doi: 10.1038/s41598-019-51697-6 |
[9] |
Kinde I, Wu J, Papadopoulos N, et al. Detection and quantification of rare mutations with massively parallel sequencing[J]. Proc Natl Acad Sci U S A, 2011, 108(23):9530-9535. doi: 10.1073/pnas.1105422108.
doi: 10.1073/pnas.1105422108 |
[10] |
Gillis S, Roth A. PyClone-VI: scalable inference of clonal population structures using whole genome data[J]. BMC Bioinformatics, 2020, 21(1):571. doi: 10.1186/s12859-020-03919-2.
doi: 10.1186/s12859-020-03919-2 |
[11] |
Kalsi J, Gentry-Maharaj A, Ryan A, et al. Performance Characteristics of the Ultrasound Strategy during Incidence Screening in the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS)[J]. Cancers (Basel), 2021, 13(4):858. doi: 10.3390/cancers13040858.
doi: 10.3390/cancers13040858 |
[12] |
Whitwell HJ, Worthington J, Blyuss O, et al. Improved early detection of ovarian cancer using longitudinal multimarker models[J]. Br J Cancer, 2020, 122(6):847-856. doi: 10.1038/s41416-019-0718-9.
doi: 10.1038/s41416-019-0718-9 |
[13] |
Kamat AA, Sood AK, Dang D, et al. Quantification of total plasma cell-free DNA in ovarian cancer using real-time PCR[J]. Ann N Y Acad Sci, 2006, 1075:230-234. doi: 10.1196/annals.1368.031.
doi: 10.1196/annals.1368.031 |
[14] |
Cohen PA, Flowers N, Tong S, et al. Abnormal plasma DNA profiles in early ovarian cancer using a non-invasive prenatal testing platform: implications for cancer screening[J]. BMC Med, 2016, 14(1):126. doi: 10.1186/s12916-016-0667-6.
doi: 10.1186/s12916-016-0667-6 pmid: 27558279 |
[15] |
Wang Y, Li L, Douville C, et al. Evaluation of liquid from the Papanicolaou test and other liquid biopsies for the detection of endometrial and ovarian cancers[J]. Sci Transl Med, 2018, 10(433):eaap8793. doi: 10.1126/scitranslmed.aap8793.
doi: 10.1126/scitranslmed.aap8793 |
[16] |
Vanderstichele A, Busschaert P, Smeets D, et al. Chromosomal Instability in Cell-Free DNA as a Highly Specific Biomarker for Detection of Ovarian Cancer in Women with Adnexal Masses[J]. Clin Cancer Res, 2017, 23(9):2223-2231. doi: 10.1158/1078-0432.CCR-16-1078.
doi: 10.1158/1078-0432.CCR-16-1078 pmid: 27852697 |
[17] |
Widschwendter M, Zikan M, Wahl B, et al. The potential of circulating tumor DNA methylation analysis for the early detection and management of ovarian cancer[J]. Genome Med, 2017, 9(1):116. doi: 10.1186/s13073-017-0500-7.
doi: 10.1186/s13073-017-0500-7 pmid: 29268796 |
[18] |
Li B, Pu K, Ge L, et al. Diagnostic significance assessment of the circulating cell-free DNA in ovarian cancer: An updated meta-analysis[J]. Gene, 2019, 714:143993. doi: 10.1016/j.gene.2019.143993.
doi: 10.1016/j.gene.2019.143993 |
[19] |
Zhang R, Pu W, Zhang S, et al. Clinical value of ALU concentration and integrity index for the early diagnosis of ovarian cancer: A retrospective cohort trial[J]. PLoS One, 2018, 13(2):e0191756. doi: 10.1371/journal.pone.0191756.
doi: 10.1371/journal.pone.0191756 |
[20] |
Dvorská D, Braný D, Nagy B, et al. Aberrant Methylation Status of Tumour Suppressor Genes in Ovarian Cancer Tissue and Paired Plasma Samples[J]. Int J Mol Sci, 2019, 20(17):4119. doi: 10.3390/ijms20174119.
doi: 10.3390/ijms20174119 |
[21] |
Chan KC, Jiang P, Zheng YW, et al. Cancer genome scanning in plasma: detection of tumor-associated copy number aberrations, single-nucleotide variants, and tumoral heterogeneity by massively parallel sequencing[J]. Clin Chem, 2013, 59(1):211-224. doi: 10.1373/clinchem.2012.196014.
doi: 10.1373/clinchem.2012.196014 |
[22] |
Kim YM, Lee SW, Lee YJ, et al. Prospective study of the efficacy and utility of TP53 mutations in circulating tumor DNA as a non-invasive biomarker of treatment response monitoring in patients with high-grade serous ovarian carcinoma[J]. J Gynecol Oncol, 2019, 30(3):e32. doi: 10.3802/jgo.2019.30.e32.
doi: 10.3802/jgo.2019.30.e32 |
[23] |
Du ZH, Bi FF, Wang L, et al. Next-generation sequencing unravels extensive genetic alteration in recurrent ovarian cancer and unique genetic changes in drug-resistant recurrent ovarian cancer[J]. Mol Genet Genomic Med, 2018, 6(4):638-647. doi: 10.1002/mgg3.414.
doi: 10.1002/mgg3.414 |
[24] |
Christie EL, Fereday S, Doig K, et al. Reversion of BRCA1/2 Germline Mutations Detected in Circulating Tumor DNA From Patients With High-Grade Serous Ovarian Cancer[J]. J Clin Oncol, 2017, 35(12):1274-1280. doi: 10.1200/JCO.2016.70.4627.
doi: 10.1200/JCO.2016.70.4627 |
[25] |
Arend RC, Londoño AI, Montgomery AM, et al. Molecular Response to Neoadjuvant Chemotherapy in High-Grade Serous Ovarian Carcinoma[J]. Mol Cancer Res, 2018, 16(5):813-824. doi: 10.1158/1541-7786.MCR-17-0594.
doi: 10.1158/1541-7786.MCR-17-0594 |
[26] |
Jagelkova M, Zelinova K, Laucekova Z, et al. Comparison of Somatic Mutation Profiles Between Formalin-Fixed Paraffin Embedded Tissues and Plasma Cell-Free DNA from Ovarian Cancer Patients Before and After Surgery[J]. Biores Open Access, 2020, 9(1):73-79. doi: 10.1089/biores.2019.0031.
doi: 10.1089/biores.2019.0031 pmid: 32219013 |
[27] |
Kamat AA, Bischoff FZ, Dang D, et al. Circulating cell-free DNA: a novel biomarker for response to therapy in ovarian carcinoma[J]. Cancer Biol Ther, 2006, 5(10):1369-1374. doi: 10.4161/cbt.5.10.3240.
doi: 10.4161/cbt.5.10.3240 |
[28] |
Parkinson CA, Gale D, Piskorz AM, et al. Exploratory Analysis of TP53 Mutations in Circulating Tumour DNA as Biomarkers of Treatment Response for Patients with Relapsed High-Grade Serous Ovarian Carcinoma: A Retrospective Study[J]. PLoS Med, 2016, 13(12):e1002198. doi: 10.1371/journal.pmed.1002198.
doi: 10.1371/journal.pmed.1002198 |
[29] |
Noguchi T, Iwahashi N, Sakai K, et al. Comprehensive Gene Mutation Profiling of Circulating Tumor DNA in Ovarian Cancer: Its Pathological and Prognostic Impact[J]. Cancers(Basel), 2020, 12(11):3382. doi: 10.3390/cancers12113382.
doi: 10.3390/cancers12113382 |
[30] |
Paracchini L, Beltrame L, Grassi T, et al. Genome-wide Copy-number Alterations in Circulating Tumor DNA as a Novel Biomarker for Patients with High-grade Serous Ovarian Cancer[J]. Clin Cancer Res, 2021, 27(9):2549-2559. doi: 10.1158/1078-0432.CCR-20-3345.
doi: 10.1158/1078-0432.CCR-20-3345 |
[31] |
Alves MC, Fonseca F, Yamada A, et al. Increased circulating tumor DNA as a noninvasive biomarker of early treatment response in patients with metastatic ovarian carcinoma: A pilot study[J]. Tumour Biol, 2020, 42(5):1010428320919198. doi: 10.1177/1010428320919198.
doi: 10.1177/1010428320919198 |
[32] |
Rusan M, Andersen RF, Jakobsen A, et al. Circulating HOXA9-methylated tumour DNA: A novel biomarker of response to poly (ADP-ribose) polymerase inhibition in BRCA-mutated epithelial ovarian cancer[J]. Eur J Cancer, 2020, 125:121-129. doi: 10.1016/j.ejca.2019.11.012.
doi: 10.1016/j.ejca.2019.11.012 |
[33] |
Vidula N, Rich TA, Sartor O, et al. Routine Plasma-Based Genotyping to Comprehensively Detect Germline, Somatic, and Reversion BRCA Mutations among Patients with Advanced Solid Tumors[J]. Clin Cancer Res, 2020, 26(11):2546-2555. doi: 10.1158/1078-0432.CCR-19-2933.
doi: 10.1158/1078-0432.CCR-19-2933 |
[34] |
Lin KK, Harrell MI, Oza AM, et al. BRCA Reversion Mutations in Circulating Tumor DNA Predict Primary and Acquired Resistance to the PARP Inhibitor Rucaparib in High-Grade Ovarian Carcinoma[J]. Cancer Discov, 2019, 9(2):210-219. doi: 10.1158/2159-8290.CD-18-0715.
doi: 10.1158/2159-8290.CD-18-0715 |
[1] | 陈晓娟, 张艳馨. 妊娠合并血友病A患者足月分娩一例[J]. 国际妇产科学杂志, 2025, 52(2): 158-160. |
[2] | 张昊晟, 魏芳. Nectin-4在妇科恶性肿瘤中的研究进展[J]. 国际妇产科学杂志, 2025, 52(2): 165-168. |
[3] | 林环宇, 邵小光, 路旭宏, 王秋月, 魏巍, 佟春艳. Web of Science核心数据库2004—2024年女性恶性肿瘤患者生育力保存的研究现状及热点[J]. 国际妇产科学杂志, 2025, 52(2): 180-186. |
[4] | 陈淑婉, 邓高丕, 袁烁. 子宫伴奇异形核平滑肌瘤一例[J]. 国际妇产科学杂志, 2025, 52(2): 187-190. |
[5] | 江爱美, 张信美. 腹壁子宫内膜异位症的治疗进展[J]. 国际妇产科学杂志, 2025, 52(2): 211-216. |
[6] | 白耀俊, 王思瑶, 令菲菲, 张森淮, 李红丽, 刘畅. Trop-2及靶向Trop-2抗体偶联药物在妇科恶性肿瘤中的应用进展[J]. 国际妇产科学杂志, 2025, 52(1): 1-7. |
[7] | 侯春艳, 杜秀萍. 妊娠中晚期自发性子宫破裂二例[J]. 国际妇产科学杂志, 2025, 52(1): 110-113. |
[8] | 钟佩蕖, 招丽坚, 邹欣欣. 残角子宫妊娠行期待治疗至妊娠晚期一例[J]. 国际妇产科学杂志, 2025, 52(1): 114-116. |
[9] | 张云凤, 张宛玥, 卢悦, 王阳阳, 井佳雨, 牟婧祎, 王悦. ARID1A与PIK3CA突变在卵巢子宫内膜异位症恶变中的研究进展[J]. 国际妇产科学杂志, 2025, 52(1): 19-22. |
[10] | 李楠, 彭二玄, 刘风花. 卵巢上皮性癌脑转移20例临床分析[J]. 国际妇产科学杂志, 2025, 52(1): 23-27. |
[11] | 潘琪, 冯同富, 金晶, 吴莺, 杜欣. 腹腔镜切除成人腹膜后巨大成熟性畸胎瘤一例[J]. 国际妇产科学杂志, 2025, 52(1): 28-31. |
[12] | 贾炎峰, 吴珍珍, 王维红, 王玥元, 李娟. 原发性卵巢腺鳞癌一例[J]. 国际妇产科学杂志, 2025, 52(1): 32-36. |
[13] | 宋丽芳, 吴珍珍, 毛宝宏, 赵小丽, 刘青. 卵巢癌腹股沟淋巴结孤立转移一例[J]. 国际妇产科学杂志, 2025, 52(1): 37-41. |
[14] | 石百超, 王宇, 常惠, 卢凤娟, 关木馨, 余健楠, 吴效科. 中药及天然产物改善子宫内膜异位症的作用机制[J]. 国际妇产科学杂志, 2025, 52(1): 66-71. |
[15] | 李恒兵, 袁海宁, 张云洁, 张江琳, 郭子珍, 孙振高. 外泌体通过调控免疫微环境治疗慢性子宫内膜炎的研究进展[J]. 国际妇产科学杂志, 2025, 52(1): 72-78. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||