国际妇产科学杂志 ›› 2023, Vol. 50 ›› Issue (3): 275-280.doi: 10.12280/gjfckx.20230060
收稿日期:
2023-02-06
出版日期:
2023-06-15
发布日期:
2023-06-27
通讯作者:
刘畅,E-mail:基金资助:
MA Jian-hong, GAO Ya-ting, WAN Zi-hua, LIU Chang()
Received:
2023-02-06
Published:
2023-06-15
Online:
2023-06-27
Contact:
LIU Chang, E-mail: 摘要:
宫颈癌是我国女性最常见的生殖系统恶性肿瘤,其发病逐渐年轻化,严重威胁女性生命健康。多项研究表明,宫颈癌细胞发生能量代谢重新编程,即氧气充足时也利用糖酵解提供生物能量,这一改变与多个糖酵解酶、转运蛋白、调控分子和特定信号通路密切相关。糖代谢改变通过不同机制促进宫颈癌细胞的生长、增殖、迁移和侵袭等恶性过程,并且影响患者对放化疗的敏感性,分析该代谢过程相关蛋白表达可预测宫颈癌的预后,阻断其表达或可发挥抗癌作用。因此,糖酵解代谢相关蛋白有望成为宫颈癌治疗的潜在靶点。综述糖代谢参与宫颈癌发生、发展的病理机制,以期探讨针对能量代谢的新型治疗策略,为改善患者的治疗前景和延长生存期提供依据。
马建红, 高亚婷, 万子华, 刘畅. 糖代谢与宫颈癌关系及其致病机制的研究进展[J]. 国际妇产科学杂志, 2023, 50(3): 275-280.
MA Jian-hong, GAO Ya-ting, WAN Zi-hua, LIU Chang. Research Progress in Relationship and Pathogenesis between Glucose Metabolism and Cervical Cancer[J]. Journal of International Obstetrics and Gynecology, 2023, 50(3): 275-280.
[1] |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6):394-424. doi: 10.3322/caac.21492.
doi: 10.3322/caac.21492 |
[2] |
Liu C, Wang X, Zhang Y. The Roles of HK2 on Tumorigenesis of Cervical Cancer[J]. Technol Cancer Res Treat, 2019, 18:1533033819871306. doi: 10.1177/1533033819871306.
doi: 10.1177/1533033819871306 |
[3] |
Dai M, Song J, Wang L, et al. HOXC13 promotes cervical cancer proliferation, invasion and Warburg effect through β-catenin/c-Myc signaling pathway[J]. J Bioenerg Biomembr, 2021, 53(5):597-608. doi: 10.1007/s10863-021-09908-1.
doi: 10.1007/s10863-021-09908-1 pmid: 34309767 |
[4] |
Yang H, Hou H, Zhao H, et al. HK2 Is a Crucial Downstream Regulator of miR-148a for the Maintenance of Sphere-Forming Property and Cisplatin Resistance in Cervical Cancer Cells[J]. Front Oncol, 2021, 11:794015. doi: 10.3389/fonc.2021.794015.
doi: 10.3389/fonc.2021.794015 |
[5] |
Fan L, Huang C, Li J, et al. Long non-coding RNA urothelial cancer associated 1 regulates radioresistance via the hexokinase 2/glycolytic pathway in cervical cancer[J]. Int J Mol Med, 2018, 42(4):2247-2259. doi: 10.3892/ijmm.2018.3778.
doi: 10.3892/ijmm.2018.3778 pmid: 30015920 |
[6] |
Chen Q, Li L, Liu X, et al. Hexokinases 2 promoted cell motility and distant metastasis by elevating fibronectin through Akt1/p-Akt1 in cervical cancer cells[J]. Cancer Cell Int, 2021, 21(1):600. doi: 10.1186/s12935-021-02312-0.
doi: 10.1186/s12935-021-02312-0 pmid: 34758823 |
[7] |
Cui N, Li L, Feng Q, et al. Hexokinase 2 Promotes Cell Growth and Tumor Formation Through the Raf/MEK/ERK Signaling Pathway in Cervical Cancer[J]. Front Oncol, 2020, 10:581208. doi: 10.3389/fonc.2020.581208.
doi: 10.3389/fonc.2020.581208 |
[8] |
Wang H, Wang MS, Zhou YH, et al. Prognostic Values of LDH and CRP in Cervical Cancer[J]. Onco Targets Ther, 2020, 13:1255-1263. doi: 10.2147/OTT.S235027.
doi: 10.2147/OTT.S235027 |
[9] |
Shao X, Zheng X, Ma D, et al. Inhibition of lncRNA-NEAT1 sensitizes 5-Fu resistant cervical cancer cells through de-repressing the microRNA-34a/LDHA axis[J]. Biosci Rep, 2021, 41(7):BSR20200533. doi: 10.1042/BSR20200533.
doi: 10.1042/BSR20200533 |
[10] |
Luan Y, Zhang W, Xie J, et al. CDKN2A inhibits cell proliferation and invasion in cervical cancer through LDHA-mediated AKT/mTOR pathway[J]. Clin Transl Oncol, 2021, 23(2):222-228. doi: 10.1007/s12094-020-02409-4.
doi: 10.1007/s12094-020-02409-4 |
[11] |
Zhang W, Wang C, Hu X, et al. Inhibition of LDHA suppresses cell proliferation and increases mitochondrial apoptosis via the JNK signaling pathway in cervical cancer cells[J]. Oncol Rep, 2022, 47(4):77. doi: 10.3892/or.2022.8288.
doi: 10.3892/or.2022.8288 |
[12] |
Liu Y, Guo JZ, Liu Y, et al. Nuclear lactate dehydrogenase A senses ROS to produce α-hydroxybutyrate for HPV-induced cervical tumor growth[J]. Nat Commun, 2018, 9(1):4429. doi: 10.1038/s41467-018-06841-7.
doi: 10.1038/s41467-018-06841-7 pmid: 30356100 |
[13] |
Ichikawa R, Kawasaki R, Iwata A, et al. MicroRNA-126-3p suppresses HeLa cell proliferation, migration and invasion, and increases apoptosis via the PI3K/PDK1/AKT pathway[J]. Oncol Rep, 2020, 43(4):1300-1308. doi: 10.3892/or.2020.7512.
doi: 10.3892/or.2020.7512 pmid: 32323808 |
[14] |
Wang F, Shan S, Huo Y, et al. MiR-155-5p inhibits PDK1 and promotes autophagy via the mTOR pathway in cervical cancer[J]. Int J Biochem Cell Biol, 2018, 99:91-99. doi: 10.1016/j.biocel.2018.04.005.
doi: S1357-2725(18)30080-3 pmid: 29627439 |
[15] |
Liu Y, Qiu S, Zheng X, et al. LINC00662 modulates cervical cancer cell proliferation, invasion, and apoptosis via sponging miR-103a-3p and upregulating PDK4[J]. Mol Carcinog, 2021, 60(6):365-376. doi: 10.1002/mc.23294.
doi: 10.1002/mc.23294 |
[16] |
Zhao Z, Ji M, Wang Q, et al. miR-16-5p/PDK4-Mediated Metabolic Reprogramming Is Involved in Chemoresistance of Cervical Cancer[J]. Mol Ther Oncolytics, 2020, 17:509-517. doi: 10.1016/j.omto.2020.05.008.
doi: 10.1016/j.omto.2020.05.008 |
[17] |
Lin Y, Zhai H, Ouyang Y, et al. Knockdown of PKM2 enhances radiosensitivity of cervical cancer cells[J]. Cancer Cell Int, 2019, 19:129. doi: 10.1186/s12935-019-0845-7.
doi: 10.1186/s12935-019-0845-7 pmid: 31114449 |
[18] |
Wang C, Zeng J, Li LJ, et al. Cdc25A inhibits autophagy-mediated ferroptosis by upregulating ErbB2 through PKM2 dephosphorylation in cervical cancer cells[J]. Cell Death Dis, 2021, 12(11):1055. doi: 10.1038/s41419-021-04342-y.
doi: 10.1038/s41419-021-04342-y pmid: 34743185 |
[19] |
Li R, Li P, Wang J, et al. STIP1 down-regulation inhibits glycolysis by suppressing PKM2 and LDHA and inactivating the Wnt/β-catenin pathway in cervical carcinoma cells[J]. Life Sci, 2020, 258:118190. doi: 10.1016/j.lfs.2020.118190.
doi: 10.1016/j.lfs.2020.118190 |
[20] |
Zhang Y, Song L, Li Z. Polychlorinated biphenyls promote cell survival through pyruvate kinase M2-dependent glycolysis in HeLa cells[J]. Toxicol Mech Methods, 2019, 29(6):428-437. doi: 10.1080/15376516.2019.1584658.
doi: 10.1080/15376516.2019.1584658 |
[21] |
Saito Y, Takasawa A, Takasawa K, et al. Aldolase A promotes epithelial-mesenchymal transition to increase malignant potentials of cervical adenocarcinoma[J]. Cancer Sci, 2020, 111(8):3071-3081. doi: 10.1111/cas.14524.
doi: 10.1111/cas.14524 |
[22] |
Kim BH, Chang JH. Differential effect of GLUT1 overexpression on survival and tumor immune microenvironment of human papilloma virus type 16-positive and -negative cervical cancer[J]. Sci Rep, 2019, 9(1):13301. doi: 10.1038/s41598-019-49928-x.
doi: 10.1038/s41598-019-49928-x pmid: 31527827 |
[23] |
Zhang M, Liang L, He J, et al. Fra-1 Inhibits Cell Growth and the Warburg Effect in Cervical Cancer Cells via STAT1 Regulation of the p53 Signaling Pathway[J]. Front Cell Dev Biol, 2020, 8:579629. doi: 10.3389/fcell.2020.579629.
doi: 10.3389/fcell.2020.579629 |
[24] |
Jiang X, Yuan J, Dou Y, et al. Lipopolysaccharide Affects the Proliferation and Glucose Metabolism of Cervical Cancer Cells Through the FRA1/MDM2/p53 Pathway[J]. Int J Med Sci, 2021, 18(4):1030-1038. doi: 10.7150/ijms.47360.
doi: 10.7150/ijms.47360 pmid: 33456361 |
[25] |
Wang Y, Jin G, Guo Y, et al. SMYD2 suppresses p53 activity to promote glucose metabolism in cervical cancer[J]. Exp Cell Res, 2021, 404(2):112649. doi: 10.1016/j.yexcr.2021.112649.
doi: 10.1016/j.yexcr.2021.112649 |
[26] |
Hernández-Reséndiz I, Gallardo-Pérez JC, López-Macay A, et al. Mutant p53R248Q downregulates oxidative phosphorylation and upregulates glycolysis under normoxia and hypoxia in human cervix cancer cells[J]. J Cell Physiol, 2019, 234(5):5524-5536. doi: 10.1002/jcp.27354.
doi: 10.1002/jcp.27354 pmid: 30272821 |
[27] |
Zeng X, Wan L, Wang Y, et al. Effect of low dose of berberine on the radioresistance of cervical cancer cells via a PI3K/HIF-1 pathway under nutrient-deprived conditions[J]. Int J Radiat Biol, 2020, 96(8):1060-1067. doi: 10.1080/09553002.2020.1770358.
doi: 10.1080/09553002.2020.1770358 pmid: 32412317 |
[28] |
Zhu K, Deng C, Du P, et al. G6PC indicated poor prognosis in cervical cancer and promoted cervical carcinogenesis in vitro and in vivo[J]. Reprod Biol Endocrinol, 2022, 20(1):50. doi: 10.1186/s12958-022-00921-6.
doi: 10.1186/s12958-022-00921-6 |
[29] |
Li L, Ma Y, Maerkeya K, et al. LncRNA OIP5-AS1 Regulates the Warburg Effect Through miR-124-5p/IDH2/HIF-1α Pathway in Cervical Cancer[J]. Front Cell Dev Biol, 2021, 9:655018. doi: 10.3389/fcell.2021.655018.
doi: 10.3389/fcell.2021.655018 |
[30] |
Castelli S, Ciccarone F, Tavian D, et al. ROS-dependent HIF1α activation under forced lipid catabolism entails glycolysis and mitophagy as mediators of higher proliferation rate in cervical cancer cells[J]. J Exp Clin Cancer Res, 2021, 40(1):94. doi: 10.1186/s13046-021-01887-w.
doi: 10.1186/s13046-021-01887-w |
[31] |
Hu C, Liu T, Han C, et al. HPV E6/E7 promotes aerobic glycolysis in cervical cancer by regulating IGF2BP2 to stabilize m6A-MYC expression[J]. Int J Biol Sci, 2022, 18(2):507-521. doi: 10.7150/ijbs.67770.
doi: 10.7150/ijbs.67770 |
[32] |
Li X, Zhang C, Tian Y. Long non-coding RNA TDRG1 promotes hypoxia-induced glycolysis by targeting the miR-214-5p/SEMA4C axis in cervical cancer cells[J]. J Mol Histol, 2021, 52(2):245-256. doi: 10.1007/s10735-020-09944-y.
doi: 10.1007/s10735-020-09944-y pmid: 33394293 |
[33] |
Zhu Y, Qiu Y, Zhang X. TKTL1 participated in malignant progression of cervical cancer cells via regulating AKT signal mediated PFKFB3 and thus regulating glycolysis[J]. Cancer Cell Int, 2021, 21(1):678. doi: 10.1186/s12935-021-02383-z.
doi: 10.1186/s12935-021-02383-z pmid: 34922556 |
[34] |
Ma D, Huang Y, Song S. Inhibiting the HPV16 oncogene-mediated glycolysis sensitizes human cervical carcinoma cells to 5-fluorouracil[J]. Onco Targets Ther, 2019, 12:6711-6720. doi: 10.2147/OTT.S205334.
doi: 10.2147/OTT.S205334 |
[35] |
Liu Y, Murray-Stewart T, Casero RA Jr, et al. Targeting hexokinase 2 inhibition promotes radiosensitization in HPV16 E7-induced cervical cancer and suppresses tumor growth[J]. Int J Oncol, 2017, 50(6):2011-2023. doi: 10.3892/ijo.2017.3979.
doi: 10.3892/ijo.2017.3979 |
[36] |
Tyszka-Czochara M, Bukowska-Strakova K, Kocemba-Pilarczyk KA, et al. Caffeic Acid Targets AMPK Signaling and Regulates Tricarboxylic Acid Cycle Anaplerosis while Metformin Downregulates HIF-1α-Induced Glycolytic Enzymes in Human Cervical Squamous Cell Carcinoma Lines[J]. Nutrients, 2018, 10(7):841. doi: 10.3390/nu10070841.
doi: 10.3390/nu10070841 |
[1] | 陈晓娟, 张艳馨. 妊娠合并血友病A患者足月分娩一例[J]. 国际妇产科学杂志, 2025, 52(2): 158-160. |
[2] | 张昊晟, 魏芳. Nectin-4在妇科恶性肿瘤中的研究进展[J]. 国际妇产科学杂志, 2025, 52(2): 165-168. |
[3] | 郭竞, 张茂祥, 周春鹤, 刘思宁, 李惠艳. 孟德尔随机化在暴露因素与宫颈癌因果关系中的研究进展[J]. 国际妇产科学杂志, 2025, 52(2): 169-174. |
[4] | 柴玲娜, 李艳丽, 石洁, 高晗, 欧阳夕颜, 程诗语. 吲哚菁绿示踪前哨淋巴结在早期宫颈癌中的应用[J]. 国际妇产科学杂志, 2025, 52(2): 175-179. |
[5] | 林环宇, 邵小光, 路旭宏, 王秋月, 魏巍, 佟春艳. Web of Science核心数据库2004—2024年女性恶性肿瘤患者生育力保存的研究现状及热点[J]. 国际妇产科学杂志, 2025, 52(2): 180-186. |
[6] | 江爱美, 张信美. 腹壁子宫内膜异位症的治疗进展[J]. 国际妇产科学杂志, 2025, 52(2): 211-216. |
[7] | 白耀俊, 王思瑶, 令菲菲, 张森淮, 李红丽, 刘畅. Trop-2及靶向Trop-2抗体偶联药物在妇科恶性肿瘤中的应用进展[J]. 国际妇产科学杂志, 2025, 52(1): 1-7. |
[8] | 侯春艳, 杜秀萍. 妊娠中晚期自发性子宫破裂二例[J]. 国际妇产科学杂志, 2025, 52(1): 110-113. |
[9] | 钟佩蕖, 招丽坚, 邹欣欣. 残角子宫妊娠行期待治疗至妊娠晚期一例[J]. 国际妇产科学杂志, 2025, 52(1): 114-116. |
[10] | 胡明珠, 刘丽文, 黄蕾. HIV感染女性的阴道微生态变化与宫颈癌的相关研究[J]. 国际妇产科学杂志, 2025, 52(1): 13-18. |
[11] | 潘琪, 冯同富, 金晶, 吴莺, 杜欣. 腹腔镜切除成人腹膜后巨大成熟性畸胎瘤一例[J]. 国际妇产科学杂志, 2025, 52(1): 28-31. |
[12] | 贾炎峰, 吴珍珍, 王维红, 王玥元, 李娟. 原发性卵巢腺鳞癌一例[J]. 国际妇产科学杂志, 2025, 52(1): 32-36. |
[13] | 宋丽芳, 吴珍珍, 毛宝宏, 赵小丽, 刘青. 卵巢癌腹股沟淋巴结孤立转移一例[J]. 国际妇产科学杂志, 2025, 52(1): 37-41. |
[14] | 石百超, 王宇, 常惠, 卢凤娟, 关木馨, 余健楠, 吴效科. 中药及天然产物改善子宫内膜异位症的作用机制[J]. 国际妇产科学杂志, 2025, 52(1): 66-71. |
[15] | 李恒兵, 袁海宁, 张云洁, 张江琳, 郭子珍, 孙振高. 外泌体通过调控免疫微环境治疗慢性子宫内膜炎的研究进展[J]. 国际妇产科学杂志, 2025, 52(1): 72-78. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||