国际妇产科学杂志 ›› 2021, Vol. 48 ›› Issue (1): 61-65.doi: 10.12280/gjfckx.20200530
收稿日期:
2020-06-23
出版日期:
2021-02-15
发布日期:
2021-03-01
通讯作者:
李佩玲
E-mail:Liplhrb668@163.com
LIU Yan, LU Peng, HOU Li-ying, LI Pei-ling△()
Received:
2020-06-23
Published:
2021-02-15
Online:
2021-03-01
Contact:
LI Pei-ling
E-mail:Liplhrb668@163.com
摘要:
环状RNA(circular RNAs,circRNA)是具有多种特性和病理生理功能的非编码RNA网络热点成员。circRNA在表观遗传、转录和转录后调控水平上发挥作用。目前经过验证的涉及卵巢癌的内源性circRNA数量持续增加,且多种circRNA表达与卵巢癌的发生、侵袭和转移有关。此外,circRNA的异常表达也与卵巢癌的分期、肿瘤体积、分化和转移密切相关。由于circRNA高稳定性、高度保守并且具有组织特异性表达模式,其可能成为诊断卵巢癌的潜在标志物。本文综述了卵巢癌相关circRNA的研究,提出了其对卵巢癌发生的影响,及其作为诊断和预后生物标志物和作为卵巢癌治疗靶点的潜在价值,并且探讨了circRNA对卵巢癌化疗药物耐药性的影响。最后,讨论了卵巢癌相关circRNA在临床上的潜力和未来研究方向。
刘艳, 鲁鹏, 候丽盈, 李佩玲. 环状RNA在卵巢癌中的研究新进展[J]. 国际妇产科学杂志, 2021, 48(1): 61-65.
LIU Yan, LU Peng, HOU Li-ying, LI Pei-ling. New Research Progress of CircRNA in Ovarian Cancer[J]. Journal of International Obstetrics and Gynecology, 2021, 48(1): 61-65.
[1] |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018[J]. CA Cancer J Clin, 2018,68(1):7-30. doi: 10.3322/caac.21442.
doi: 10.3322/caac.21442 pmid: 29313949 |
[2] |
Torre LA, Trabert B, DeSantis CE, et al. Ovarian cancer statistics, 2018[J]. CA Cancer J Clin, 2018,68(4):284-296. doi: 10.3322/caac.21456.
doi: 10.3322/caac.21456 pmid: 29809280 |
[3] |
Li QH, Liu Y, Chen S, et al. circ-CSPP1 promotes proliferation, invasion and migration of ovarian cancer cells by acting as a miR-1236-3p sponge[J]. Biomed Pharmacother, 2019,114:108832. doi: 10.1016/j.biopha.2019.108832.
doi: 10.1016/j.biopha.2019.108832 pmid: 30965236 |
[4] |
Pokhriyal R, Hariprasad R, Kumar L, et al. Chemotherapy Resistance in Advanced Ovarian Cancer Patients[J]. Biomark Cancer, 2019, 11:1179299X19860815. doi: 10.1177/1179299X19860815.
doi: 10.1177/1179299X17710944 pmid: 28607544 |
[5] |
Chen LL, Yang L. Regulation of circRNA biogenesis[J]. RNA Biol, 2015,12(4):381-388. doi: 10.1080/15476286.2015.1020271.
doi: 10.1080/15476286.2015.1020271 pmid: 25746834 |
[6] |
Suzuki H, Tsukahara T. A view of pre-mRNA splicing from RNase R resistant RNAs[J]. Int J Mol Sci, 2014,15(6):9331-9342. doi: 10.3390/ijms15069331.
doi: 10.3390/ijms15069331 pmid: 24865493 |
[7] |
Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats[J]. RNA, 2013,19(2):141-157. doi: 10.1261/rna.035667.112.
doi: 10.1261/rna.035667.112 |
[8] |
Han B, Chao J, Yao H. Circular RNA and its mechanisms in disease: From the bench to the clinic[J]. Pharmacol Ther, 2018,187:31-44. doi: 10.1016/j.pharmthera.2018.01.010.
doi: 10.1016/j.pharmthera.2018.01.010 pmid: 29406246 |
[9] |
Rybak-Wolf A, Stottmeister C, Glažar P, et al. Circular RNAs in the Mammalian Brain Are Highly Abundant,Conserved,and Dynamically Expressed[J]. Mol Cell, 2015,58(5):870-885. doi: 10.1016/j.molcel.2015.03.027.
doi: 10.1016/j.molcel.2015.03.027 pmid: 25921068 |
[10] |
Qu S, Yang X, Li X, et al. Circular RNA: A new star of noncoding RNAs[J]. Cancer Lett, 2015,365(2):141-148. doi: 10.1016/j.canlet.2015.06.003.
doi: 10.1016/j.canlet.2015.06.003 pmid: 26052092 |
[11] |
Gan X, Zhu H, Jiang X, et al. CircMUC16 promotes autophagy of epithelial ovarian cancer via interaction with ATG13 and miR-199a[J]. Mol Cancer, 2020,19(1):45. doi: 10.1186/s12943-020-01163-z.
doi: 10.1186/s12943-020-01163-z pmid: 32111227 |
[12] |
Deng G, Zhou X, Chen L, et al. High expression of ESRP1 regulated by circ-0005585 promotes cell colonization in ovarian cancer[J]. Cancer Cell Int, 2020,20:174. doi: 10.1186/s12935-020-01254-3.
doi: 10.1186/s12935-020-01254-3 pmid: 32467669 |
[13] |
Zhao Y, Hu Y, Shen Q, et al. CircRNA_MYLK promotes malignant progression of ovarian cancer through regulating microRNA-652[J]. Eur Rev Med Pharmacol Sci, 2020,24(10):5281-5291. doi: 10.26355/eurrev_202005_21310.
doi: 10.26355/eurrev_202005_21310 pmid: 32495861 |
[14] |
Zhao Z, Ji M, Wang Q, et al. Circular RNA Cdr1as Upregulates SCAI to Suppress Cisplatin Resistance in Ovarian Cancer via miR-1270 Suppression[J]. Mol Ther Nucleic Acids, 2019,18:24-33. doi: 10.1016/j.omtn.2019.07.012.
doi: 10.1016/j.omtn.2019.07.012 pmid: 31479922 |
[15] |
Zhang S, Cheng J, Quan C, et al. circCELSR1 (hsa_circ_0063809) Contributes to Paclitaxel Resistance of Ovarian Cancer Cells by Regulating FOXR2 Expression via miR-1252[J]. Mol Ther Nucleic Acids, 2020,19:718-730. doi: 10.1016/j.omtn.2019.12.005.
doi: 10.1016/j.omtn.2019.12.005 pmid: 31945729 |
[16] |
Chen LL. The biogenesis and emerging roles of circular RNAs[J]. Nat Rev Mol Cell Biol, 2016,17(4):205-211. doi: 10.1038/nrm.2015.32.
doi: 10.1038/nrm.2015.32 pmid: 26908011 |
[17] |
Xu S, Zhou L, Ponnusamy M, et al. A comprehensive review of circRNA: from purification and identification to disease marker potential[J]. PeerJ, 2018,6:e5503. doi: 10.7717/peerj.5503.
doi: 10.7717/peerj.5503 pmid: 30155370 |
[18] |
Ashwal-Fluss R, Meyer M, Pamudurti NR, et al. circRNA biogenesis competes with pre-mRNA splicing[J]. Mol Cell, 2014,56(1):55-66. doi: 10.1016/j.molcel.2014.08.019.
doi: 10.1016/j.molcel.2014.08.019 pmid: 25242144 |
[19] |
Starke S, Jost I, Rossbach O, et al. Exon circularization requires canonical splice signals[J]. Cell Rep, 2015,10(1):103-111. doi: 10.1016/j.celrep.2014.12.002.
doi: 10.1016/j.celrep.2014.12.002 pmid: 25543144 |
[20] |
Zhang XO, Dong R, Zhang Y, et al. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs[J]. Genome Res, 2016,26(9):1277-1287. doi: 10.1101/gr.202895.115.
doi: 10.1101/gr.202895.115 pmid: 27365365 |
[21] |
Dong Y, He D, Peng Z, et al. Circular RNAs in cancer: an emerging key player[J]. J Hematol Oncol, 2017,10(1):2. doi: 10.1186/s13045-016-0370-2.
doi: 10.1186/s13045-016-0370-2 pmid: 28049499 |
[22] |
Hansen TB, Wiklund ED, Bramsen JB, et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA[J]. EMBO J, 2011,30(21):4414-4422. doi: 10.1038/emboj.2011.359.
doi: 10.1038/emboj.2011.359 |
[23] |
Zang J, Lu D, Xu A. The interaction of circRNAs and RNA binding proteins: An important part of circRNA maintenance and function[J]. J Neurosci Res, 2020,98(1):87-97. doi: 10.1002/jnr.24356.
doi: 10.1002/jnr.24356 pmid: 30575990 |
[24] |
Dragomir M, Calin GA. Circular RNAs in Cancer-Lessons Learned From microRNAs[J]. Front Oncol, 2018,8:179. doi: 10.3389/fonc.2018.00179.
doi: 10.3389/fonc.2018.00179 pmid: 29911069 |
[25] |
Zhang Y, Zhang XO, Chen T, et al. Circular intronic long noncoding RNAs[J]. Mol Cell, 2013,51(6):792-806. doi: 10.1016/j.molcel.2013. 08.017.
doi: 10.1016/j.molcel.2013.08.017 pmid: 24035497 |
[26] |
Panda AC, Grammatikakis I, Munk R, et al. Emerging roles and context of circular RNAs[J]. Wiley Interdiscip Rev RNA, 2017, 8(2):10.1002/wrna. doi: 10.1002/wrna.1386.
doi: 10.1002/wrna.1381 pmid: 27440103 |
[27] |
Pan J, Meng X, Jiang N, et al. Insights into the Noncoding RNA-encoded Peptides[J]. Protein Pept Lett, 2018,25(8):720-727. doi: 10.2174/0929866525666180809142326.
doi: 10.2174/0929866525666180809142326 pmid: 30091402 |
[28] |
Zhang M, Xia B, Xu Y, et al. Circular RNA (hsa_circ_0051240) promotes cell proliferation, migration and invasion in ovarian cancer through miR-637/KLK4 axis[J]. Artif Cells Nanomed Biotechnol, 2019,47(1):1224-1233. doi: 10.1080/21691401.2019.1593999.
doi: 10.1080/21691401.2019.1593999 pmid: 30945557 |
[29] |
Xie J, Wang S, Li G, et al. circEPSTI1 regulates ovarian cancer progression via decoying miR-942[J]. J Cell Mol Med, 2019,23(5):3597-3602. doi: 10.1111/jcmm.14260.
doi: 10.1111/jcmm.14260 pmid: 30887698 |
[30] |
Chen H, Mao M, Jiang J, et al. Circular RNA CDR1as acts as a sponge of miR-135b-5p to suppress ovarian cancer progression[J]. Onco Targets Ther, 2019,12:3869-3879. doi: 10.2147/OTT.S207938.
doi: 10.2147/OTT.S207938 pmid: 31190886 |
[31] |
Huang XY, Huang ZL, Xu YH, et al. Comprehensive circular RNA profiling reveals the regulatory role of the circRNA-100338/miR-141-3p pathway in hepatitis B-related hepatocellular carcinoma[J]. Sci Rep, 2017,7(1):5428. doi: 10.1038/s41598-017-05432-8.
doi: 10.1038/s41598-017-05432-8 pmid: 28710406 |
[32] |
Zhou B, Yu JW. A novel identified circular RNA, circRNA_010567,promotes myocardial fibrosis via suppressing miR-141 by targeting TGF-β1[J]. Biochem Biophys Res Commun, 2017,487(4):769-775. doi: 10.1016/j.bbrc.2017.04.044.
pmid: 28412345 |
[33] |
Mak CS, Yung MM, Hui LM, et al. MicroRNA-141 enhances anoikis resistance in metastatic progression of ovarian cancer through targeting KLF12/Sp1/survivin axis[J]. Mol Cancer, 2017,16(1):11. doi: 10.1186/s12943-017-0582-2.
doi: 10.1186/s12943-017-0582-2 pmid: 28095864 |
[34] |
van Jaarsveld MT, Helleman J, Boersma AW, et al. miR-141 regulates KEAP1 and modulates cisplatin sensitivity in ovarian cancer cells[J]. Oncogene, 2013,32(36):4284-4293. doi: 10.1038/onc.2012.433.
doi: 10.1038/onc.2012.433 |
[35] |
Sehouli J, Senyuva F, Fotopoulou C, et al. Intra-abdominal tumor dissemination pattern and surgical outcome in 214 patients with primary ovarian cancer[J]. J Surg Oncol, 2009,99(7):424-427. doi: 10.1002/jso.21288.
doi: 10.1002/jso.21288 pmid: 19365809 |
[36] |
Sanger HL, Klotz G, Riesner D, et al. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures[J]. Proc Natl Acad Sci U S A, 1976,73(11):3852-3856. doi: 10.1073/pnas.73.11.3852.
doi: 10.1073/pnas.73.11.3852 pmid: 1069269 |
[37] |
Ahmed I, Karedath T, Andrews SS, et al. Altered expression pattern of circular RNAs in primary and metastatic sites of epithelial ovarian carcinoma[J]. Oncotarget, 2016,7(24):36366-36381. doi: 10.18632/oncotarget.8917.
doi: 10.18632/oncotarget.8917 pmid: 27119352 |
[38] |
Zhang P, Zhu J, Zheng Y, et al. miRNA-574-3p inhibits metastasis and chemoresistance of epithelial ovarian cancer (EOC) by negatively regulating epidermal growth factor receptor (EGFR)[J]. Am J Transl Res, 2019,11(7):4151-4165.
pmid: 31396325 |
[39] |
Chen X, Mangala LS, Mooberry L, et al. Identifying and targeting angiogenesis-related microRNAs in ovarian cancer[J]. Oncogene, 2019,38(33):6095-6108. doi: 10.1038/s41388-019-0862-y.
doi: 10.1038/s41388-019-0862-y pmid: 31289363 |
[40] |
Clark AS, West K, Streicher S, et al. Constitutive and inducible Akt activity promotes resistance to chemotherapy, trastuzumab, or tamoxifen in breast cancer cells[J]. Mol Cancer Ther, 2002,1(9):707-717.
pmid: 12479367 |
[41] |
Mabuchi S, Kuroda H, Takahashi R, et al. The PI3K/AKT/mTOR pathway as a therapeutic target in ovarian cancer[J]. Gynecol Oncol, 2015,137(1):173-179. doi: 10.1016/j.ygyno.2015.02.003.
doi: 10.1016/j.ygyno.2015.02.003 pmid: 25677064 |
[42] |
Zhang L, Zhou Q, Qiu Q, et al. CircPLEKHM3 acts as a tumor suppressor through regulation of the miR-9/BRCA1/DNAJB6/KLF4/AKT1 axis in ovarian cancer[J]. Mol Cancer, 2019,18(1):144. doi: 10.1186/s12943-019-1080-5.
doi: 10.1186/s12943-019-1080-5 pmid: 31623606 |
[43] |
Wang W, Wang J, Zhang X, et al. Serum circSETDB1 is a promising biomarker for predicting response to platinum-taxane-combined chemotherapy and relapse in high-grade serous ovarian cancer[J]. Onco Targets Ther, 2019,12:7451-7457. doi: 10.2147/OTT.S220700.
doi: 10.2147/OTT.S220700 pmid: 31686850 |
[44] |
Fan CM, Wang JP, Tang YY, et al. circMAN1A2 could serve as a novel serum biomarker for malignant tumors[J]. Cancer Sci, 2019,110(7):2180-2188. doi: 10.1111/cas.14034.
doi: 10.1111/cas.14034 pmid: 31046163 |
[45] |
Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013,495(7441):384-388. doi: 10.1038/nature11993.
doi: 10.1038/nature11993 |
[46] |
Liu X, Abraham JM, Cheng Y, et al. Synthetic Circular RNA Functions as a miR-21 Sponge to Suppress Gastric Carcinoma Cell Proliferation[J]. Mol Ther Nucleic Acids, 2018,13:312-321. doi: 10.1016/j.omtn.2018.09.010.
doi: 10.1016/j.omtn.2018.09.010 pmid: 30326427 |
[47] |
Wang Z, Ma K, Cheng Y, et al. Synthetic circular multi-miR sponge simultaneously inhibits miR-21 and miR-93 in esophageal carcinoma[J]. Lab Invest, 2019,99(10):1442-1453. doi: 10.1038/s41374-019-0273-2.
doi: 10.1038/s41374-019-0273-2 pmid: 31217510 |
[48] |
Shah MY, Ferrajoli A, Sood AK, et al. microRNA Therapeutics in Cancer - An Emerging Concept[J]. EBioMedicine, 2016,12:34-42. doi: 10.1016/j.ebiom.2016.09.017.
doi: 10.1016/j.ebiom.2016.09.017 pmid: 27720213 |
[49] |
Petrescu G, Sabo AA, Torsin LI, et al. MicroRNA based theranostics for brain cancer: basic principles[J]. J Exp Clin Cancer Res, 2019,38(1):231. doi: 10.1186/s13046-019-1180-5.
doi: 10.1186/s13046-019-1180-5 pmid: 31142339 |
[50] |
Kristensen LS, Andersen MS, Stagsted L, et al. The biogenesis, biology and characterization of circular RNAs[J]. Nat Rev Genet, 2019,20(11):675-691. doi: 10.1038/s41576-019-0158-7.
doi: 10.1038/s41576-019-0158-7 pmid: 31395983 |
[1] | 陈晓娟, 张艳馨. 妊娠合并血友病A患者足月分娩一例[J]. 国际妇产科学杂志, 2025, 52(2): 158-160. |
[2] | 张昊晟, 魏芳. Nectin-4在妇科恶性肿瘤中的研究进展[J]. 国际妇产科学杂志, 2025, 52(2): 165-168. |
[3] | 郭竞, 张茂祥, 周春鹤, 刘思宁, 李惠艳. 孟德尔随机化在暴露因素与宫颈癌因果关系中的研究进展[J]. 国际妇产科学杂志, 2025, 52(2): 169-174. |
[4] | 柴玲娜, 李艳丽, 石洁, 高晗, 欧阳夕颜, 程诗语. 吲哚菁绿示踪前哨淋巴结在早期宫颈癌中的应用[J]. 国际妇产科学杂志, 2025, 52(2): 175-179. |
[5] | 林环宇, 邵小光, 路旭宏, 王秋月, 魏巍, 佟春艳. Web of Science核心数据库2004—2024年女性恶性肿瘤患者生育力保存的研究现状及热点[J]. 国际妇产科学杂志, 2025, 52(2): 180-186. |
[6] | 陈淑婉, 邓高丕, 袁烁. 子宫伴奇异形核平滑肌瘤一例[J]. 国际妇产科学杂志, 2025, 52(2): 187-190. |
[7] | 尹雨鑫, 王长河. 高龄女性盆腔深部侵袭性血管黏液瘤一例[J]. 国际妇产科学杂志, 2025, 52(2): 191-194. |
[8] | 王佳丽, 马国霞, 魏佳, 刘思敏, 杨永秀. 生殖系统T淋巴母细胞淋巴瘤一例[J]. 国际妇产科学杂志, 2025, 52(2): 195-199. |
[9] | 江爱美, 张信美. 腹壁子宫内膜异位症的治疗进展[J]. 国际妇产科学杂志, 2025, 52(2): 211-216. |
[10] | 白耀俊, 王思瑶, 令菲菲, 张森淮, 李红丽, 刘畅. Trop-2及靶向Trop-2抗体偶联药物在妇科恶性肿瘤中的应用进展[J]. 国际妇产科学杂志, 2025, 52(1): 1-7. |
[11] | 侯春艳, 杜秀萍. 妊娠中晚期自发性子宫破裂二例[J]. 国际妇产科学杂志, 2025, 52(1): 110-113. |
[12] | 钟佩蕖, 招丽坚, 邹欣欣. 残角子宫妊娠行期待治疗至妊娠晚期一例[J]. 国际妇产科学杂志, 2025, 52(1): 114-116. |
[13] | 胡明珠, 刘丽文, 黄蕾. HIV感染女性的阴道微生态变化与宫颈癌的相关研究[J]. 国际妇产科学杂志, 2025, 52(1): 13-18. |
[14] | 张云凤, 张宛玥, 卢悦, 王阳阳, 井佳雨, 牟婧祎, 王悦. ARID1A与PIK3CA突变在卵巢子宫内膜异位症恶变中的研究进展[J]. 国际妇产科学杂志, 2025, 52(1): 19-22. |
[15] | 李楠, 彭二玄, 刘风花. 卵巢上皮性癌脑转移20例临床分析[J]. 国际妇产科学杂志, 2025, 52(1): 23-27. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||