国际妇产科学杂志 ›› 2021, Vol. 48 ›› Issue (3): 290-294.doi: 10.12280/gjfckx.20200948
收稿日期:
2020-10-14
出版日期:
2021-06-15
发布日期:
2021-06-25
通讯作者:
徐步芳
E-mail:bufangxu@163.com
基金资助:
Received:
2020-10-14
Published:
2021-06-15
Online:
2021-06-25
Contact:
XU Bu-fang
E-mail:bufangxu@163.com
摘要:
宫腔粘连(intrauterine adhesion,IUA)是由子宫内膜损伤引起的纤维化修复障碍,并可能伴有月经异常并导致不孕。目前主流的临床治疗存在不同程度的局限性,如手术造成机械损伤和高炎症状态可能会进一步加重纤维化严重程度和带来不良妊娠结局,还有局部药物治疗和干细胞治疗存在低滞留率,导致促子宫内膜再生效果不佳。组织工程促进子宫内膜再生是一种新颖而有前景的思路,利用生物相容性材料作为载体将药物或干细胞等递呈到子宫腔中缓慢释放获得良好的治疗效果。其中,生物复合材料在治疗IUA方面的报道较少,但效果显著。现对生物复合材料这个组织工程方案治疗促进子宫内膜再生进行综述,以供参考。
李文竹, 徐步芳. 生物复合材料促进子宫内膜再生的研究进展[J]. 国际妇产科学杂志, 2021, 48(3): 290-294.
LI Wen-zhu, XU Bu-fang. Research Advance of Biocomposite Materials in Promoting Endometrial Regeneration[J]. Journal of International Obstetrics and Gynecology, 2021, 48(3): 290-294.
[1] |
Dreisler E, Kjer JJ. Asherman′s syndrome: current perspectives on diagnosis and management[J]. Int J Womens Health, 2019,11:191-198. doi: 10.2147/IJWH.S165474.
doi: 10.2147/IJWH.S165474 pmid: 30936754 |
[2] |
Hanstede MM, van der Meij E, Goedemans L, et al. Results of centralized Asherman surgery, 2003-2013[J]. Fertil Steril, 2015,104(6):1561-1568.e1. doi: 10.1016/j.fertnstert.2015.08.039.
doi: 10.1016/j.fertnstert.2015.08.039 |
[3] |
Zhou Q, Wu X, Dai X, et al. The different dosages of estrogen affect endometrial fibrosis and receptivity, but not SDF-1/CXCR4 axis in the treatment of intrauterine adhesions[J]. Gynecol Endocrinol, 2018,34(1):49-55. doi: 10.1080/09513590.2017.1328050.
doi: 10.1080/09513590.2017.1328050 |
[4] |
Chi Y, He P, Lei L, et al. Transdermal estrogen gel and oral aspirin combination therapy improves fertility prognosis via the promotion of endometrial receptivity in moderate to severe intrauterine adhesion[J]. Mol Med Rep, 2018,17(5):6337-6344. doi: 10.3892/mmr.2018. 8685.
doi: 10.3892/mmr.2018. 8685 |
[5] |
Zhang L, Wang M, Zhang Q, et al. Estrogen therapy before hysteroscopic adhesiolysis improves the fertility outcome in patients with intrauterine adhesions[J]. Arch Gynecol Obstet, 2019,300(4):933-939. doi: 10.1007/s00404-019-05249-y.
doi: 10.1007/s00404-019-05249-y |
[6] |
Lin XN, Zhou F, Wei ML, et al. Randomized, controlled trial comparing the efficacy of intrauterine balloon and intrauterine contraceptive device in the prevention of adhesion reformation after hysteroscopic adhesiolysis[J]. Fertil Steril, 2015,104(1):235-240. doi: 10.1016/j.fertnstert.2015.04.008.
doi: 10.1016/j.fertnstert.2015.04.008 |
[7] |
AAGL Elevating Gynecologic Surgery. AAGL Practice Report: Practice Guidelines on Intrauterine Adhesions Developed in Collaboration With the European Society of Gynaecological Endoscopy (ESGE)[J]. J Minim Invasive Gynecol, 2017,24(5):695-705. doi: 10.1016/j.jmig.2016.11.008.
doi: 10.1016/j.jmig.2016.11.008 |
[8] |
Vermeulen N, Haddow G, Seymour T, et al. 3D bioprint me: a socioethical view of bioprinting human organs and tissues[J]. J Med Ethics, 2017,43(9):618-624. doi: 10.1136/medethics-2015-103347.
doi: 10.1136/medethics-2015-103347 pmid: 28320774 |
[9] |
Matai I, Kaur G, Seyedsalehi A, et al. Progress in 3D bioprinting technology for tissue/organ regenerative engineering[J]. Biomaterials, 2020,226:119536. doi: 10.1016/j.biomaterials.2019.119536.
doi: 10.1016/j.biomaterials.2019.119536 |
[10] |
Kou L, Jiang X, Xiao S, et al. Therapeutic options and drug delivery strategies for the prevention of intrauterine adhesions[J]. J Control Release, 2020,318:25-37. doi: 10.1016/j.jconrel.2019.12.007.
doi: 10.1016/j.jconrel.2019.12.007 |
[11] |
Hom WW, Tschopp M, Lin HA, et al. Composite biomaterial repair strategy to restore biomechanical function and reduce herniation risk in an ex vivo large animal model of intervertebral disc herniation with varying injury severity[J]. PLoS One, 2019,14(5):e0217357. doi: 10.1371/journal.pone.0217357.
doi: 10.1371/journal.pone.0217357 |
[12] |
Tiwari S, Bahadur P. Modified hyaluronic acid based materials for biomedical applications[J]. Int J Biol Macromol, 2019,121:556-571. doi: 10.1016/j.ijbiomac.2018.10.049.
doi: 10.1016/j.ijbiomac.2018.10.049 |
[13] |
Mao X, Tao Y, Cai R, et al. Cross-linked hyaluronan gel to improve pregnancy rate of women patients with moderate to severe intrauterine adhesion treated with IVF: a randomized controlled trial[J]. Arch Gynecol Obstet, 2020,301(1):199-205. doi: 10.1007/s00404-019-05368-6.
doi: 10.1007/s00404-019-05368-6 |
[14] |
Kim YY, Park KH, Kim YJ, et al. Synergistic regenerative effects of functionalized endometrial stromal cells with hyaluronic acid hydrogel in a murine model of uterine damage[J]. Acta Biomater, 2019,89:139-151. doi: 10.1016/j.actbio.2019.03.032.
doi: 10.1016/j.actbio.2019.03.032 |
[15] |
Cai H, Qiao L, Song K, et al. Oxidized, Regenerated Cellulose Adhesion Barrier Plus Intrauterine Device Prevents Recurrence After Adhesiolysis for Moderate to Severe Intrauterine Adhesions[J]. J Minim Invasive Gynecol, 2017,24(1):80-88. doi: 10.1016/j.jmig.2016.09.021.
doi: 10.1016/j.jmig.2016.09.021 |
[16] |
He JX, Tan WL, Han QM, et al. Fabrication of silk fibroin/cellulose whiskers-chitosan composite porous scaffolds by layer-by-layer assembly for application in bone tissue engineering[J]. J Mater Sci, 2016,51(9):4399-4410. doi: 10.1007/s10853-016-9752-7.
doi: 10.1007/s10853-016-9752-7 |
[17] |
Cai H, Wu B, Li Y, et al. Local Delivery of Silk-Cellulose Incorporated with Stromal Cell-Derived Factor-1α Functionally Improves the Uterus Repair[J]. Tissue Eng Part A, 2019,25(21/22):1514-1526. doi: 10.1089/ten.TEA.2018.0283.
doi: 10.1089/ten.TEA.2018.0283 |
[18] |
Bakshi PS, Selvakumar D, Kadirvelu K, et al. Chitosan as an environment friendly biomaterial-a review on recent modifications and applications[J]. Int J Biol Macromol, 2020,150:1072-1083. doi: 10.1016/j.ijbiomac.2019.10.113.
doi: 10.1016/j.ijbiomac.2019.10.113 |
[19] |
Wenbo Q, Lijian X, Shuangdan Z, et al. Controlled releasing of SDF-1α in chitosan-heparin hydrogel for endometrium injury healing in rat model[J]. Int J Biol Macromol, 2020,143:163-172. doi: 10.1016/j.ijbiomac.2019.11.184.
doi: 10.1016/j.ijbiomac.2019.11.184 |
[20] |
Yue K, Trujillo-de Santiago G, Alvarez MM, et al. Synjournal, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels[J]. Biomaterials, 2015,73:254-271. doi: 10.1016/j.biomaterials.2015.08.045.
doi: 10.1016/j.biomaterials.2015.08.045 |
[21] |
Cai Y, Wu F, Yu Y, et al. Porous scaffolds from droplet microfluidics for prevention of intrauterine adhesion[J]. Acta Biomater, 2019,84:222-230. doi: 10.1016/j.actbio.2018.11.016.
doi: 10.1016/j.actbio.2018.11.016 |
[22] |
Xu HL, Tian FR, Lu CT, et al. Thermo-sensitive hydrogels combined with decellularised matrix deliver bFGF for the functional recovery of rats after a spinal cord injury[J]. Sci Rep, 2016,6:38332. doi: 10.1038/srep38332.
doi: 10.1038/srep38332 |
[23] |
Russo E, Villa C. Poloxamer Hydrogels for Biomedical Applications[J]. Pharmaceutics, 2019,11(12):671. doi: 10.3390/pharmaceutics11120671.
doi: 10.3390/pharmaceutics11120671 |
[24] |
Zhang SS, Xia WT, Xu J, et al. Three-dimensional structure micelles of heparin-poloxamer improve the therapeutic effect of 17β-estradiol on endometrial regeneration for intrauterine adhesions in a rat model[J]. Int J Nanomedicine, 2017,12:5643-5657. doi: 10.2147/IJN.S137237.
doi: 10.2147/IJN.S137237 |
[25] |
Zhang SS, Xu XX, Xiang WW, et al. Using 17β-estradiol heparin-poloxamer thermosensitive hydrogel to enhance the endometrial regeneration and functional recovery of intrauterine adhesions in a rat model[J]. FASEB J, 2020,34(1):446-457. doi: 10.1096/fj.201901603RR.
doi: 10.1096/fj.201901603RR |
[26] |
Xu HL, Xu J, Zhang SS, et al. Temperature-sensitive heparin-modified poloxamer hydrogel with affinity to KGF facilitate the morphologic and functional recovery of the injured rat uterus[J]. Drug Deliv, 2017,24(1):867-881. doi: 10.1080/10717544.2017.1333173.
doi: 10.1080/10717544.2017.1333173 |
[27] |
Xu HL, Xu J, Shen BX, et al. Dual Regulations of Thermosensitive Heparin-Poloxamer Hydrogel Using ε-Polylysine: Bioadhesivity and Controlled KGF Release for Enhancing Wound Healing of Endometrial Injury[J]. ACS Appl Mater Interfaces, 2017,9(35):29580-29594. doi: 10.1021/acsami.7b10211.
doi: 10.1021/acsami.7b10211 |
[28] |
Sabetkish S, Kajbafzadeh AM, Sabetkish N, et al. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix liver scaffolds[J]. J Biomed Mater Res A, 2015,103(4):1498-1508. doi: 10.1002/jbm.a.35291.
doi: 10.1002/jbm.a.35291 pmid: 25045886 |
[29] |
Huang YB, Lin MW, Liu MY, et al. Composite of Decellular Adipose Tissue with Chitosan-Based Scaffold for Tissue Engineering with Adipose-Derived Stem Cells[J]. J Biomater Tissue Eng, 2015,5(1):56-63. doi: 10.1166/jbt.2015.1284.
doi: 10.1166/jbt.2015.1284 |
[30] |
Yao Q, Zheng YW, Lan QH, et al. Aloe/poloxamer hydrogel as an injectable β-estradiol delivery scaffold with multi-therapeutic effects to promote endometrial regeneration for intrauterine adhesion treatment[J]. Eur J Pharm Sci, 2020,148:105316. doi: 10.1016/j.ejps.2020.105316.
doi: 10.1016/j.ejps.2020.105316 |
[31] |
Chen Y, Fei W, Zhao Y, et al. Sustained delivery of 17β-estradiol by human amniotic extracellular matrix (HAECM) scaffold integrated with PLGA microspheres for endometrium regeneration[J]. Drug Deliv, 2020,27(1):1165-1175. doi: 10.1080/10717544.2020.1801891.
doi: 10.1080/10717544.2020.1801891 pmid: 32755258 |
[32] |
Yang H, Wu S, Feng R, et al. Vitamin C plus hydrogel facilitates bone marrow stromal cell-mediated endometrium regeneration in rats[J]. Stem Cell Res Ther, 2017,8(1):267. doi: 10.1186/s13287-017-0718-8.
doi: 10.1186/s13287-017-0718-8 |
[33] |
Keshvardoostchokami M, Majidi SS, Huo P, et al. Electrospun Nanofibers of Natural and Synthetic Polymers as Artificial Extracellular Matrix for Tissue Engineering[J]. Nanomaterials(Basel), 2020,11(1):21. doi: 10.3390/nano11010021.
doi: 10.3390/nano11010021 |
[34] |
Khatun M, Sorjamaa A, Kangasniemi M, et al. Niche matters: The comparison between bone marrow stem cells and endometrial stem cells and stromal fibroblasts reveal distinct migration and cytokine profiles in response to inflammatory stimulus[J]. PLoS One, 2017,12(4):e0175986. doi: 10.1371/journal.pone.0175986.
doi: 10.1371/journal.pone.0175986 |
[35] |
Queckbörner S, Davies LC, von Grothusen C, et al. Cellular therapies for the endometrium: An update[J]. Acta Obstet Gynecol Scand, 2019,98(5):672-677. doi: 10.1111/aogs.13598.
doi: 10.1111/aogs.13598 pmid: 30815850 |
[36] |
Andreadis ST, Geer DJ. Biomimetic approaches to protein and gene delivery for tissue regeneration[J]. Trends Biotechnol, 2006,24(7):331-337. doi: 10.1016/j.tibtech.2006.05.001.
doi: 10.1016/j.tibtech.2006.05.001 pmid: 16716420 |
[37] |
Yin M, Wang X, Yu Z, et al. γ-PGA hydrogel loaded with cell-free fat extract promotes the healing of diabetic wounds[J]. J Mater Chem B, 2020,8(36):8395-8404. doi: 10.1039/d0tb01190h.
doi: 10.1039/d0tb01190h |
[38] |
Zhou Y, Shen H, Wu Y, et al. Platelet-Rich Plasma Therapy Enhances the Beneficial Effect of Bone Marrow Stem Cell Transplant on Endometrial Regeneration[J]. Front Cell Dev Biol, 2020,8:52. doi: 10.3389/fcell.2020.00052.
doi: 10.3389/fcell.2020.00052 |
[39] |
Piffoux M, Nicolás-Boluda A, Mulens-Arias V, et al. Extracellular vesicles for personalized medicine: The input of physically triggered production, loading and theranostic properties[J]. Adv Drug Deliv Rev, 2019,138:247-258. doi: 10.1016/j.addr.2018.12.009.
doi: 10.1016/j.addr.2018.12.009 |
[1] | 张永清, 陈正云, 陈路萍, 颜国辉, 陈丹青. 剖宫产术中诊断足月宫角妊娠二例[J]. 国际妇产科学杂志, 2025, 52(2): 153-157. |
[2] | 陈淑婉, 邓高丕, 袁烁. 子宫伴奇异形核平滑肌瘤一例[J]. 国际妇产科学杂志, 2025, 52(2): 187-190. |
[3] | 曹秀蓉, 周文柏, 范香, 王逸斐, 朱鹏峰. 单细胞RNA测序解析子宫内膜异位症血管生成机制[J]. 国际妇产科学杂志, 2025, 52(2): 199-205. |
[4] | 殷婷, 丛慧芳. 子宫内膜异位症与痛觉敏化的免疫学研究进展[J]. 国际妇产科学杂志, 2025, 52(2): 206-210. |
[5] | 江爱美, 张信美. 腹壁子宫内膜异位症的治疗进展[J]. 国际妇产科学杂志, 2025, 52(2): 211-216. |
[6] | 封玲, 李金林. 无乳链球菌感染致子宫穿孔并发感染性休克一例[J]. 国际妇产科学杂志, 2025, 52(2): 234-236. |
[7] | 白耀俊, 王思瑶, 令菲菲, 张森淮, 李红丽, 刘畅. Trop-2及靶向Trop-2抗体偶联药物在妇科恶性肿瘤中的应用进展[J]. 国际妇产科学杂志, 2025, 52(1): 1-7. |
[8] | 侯春艳, 杜秀萍. 妊娠中晚期自发性子宫破裂二例[J]. 国际妇产科学杂志, 2025, 52(1): 110-113. |
[9] | 钟佩蕖, 招丽坚, 邹欣欣. 残角子宫妊娠行期待治疗至妊娠晚期一例[J]. 国际妇产科学杂志, 2025, 52(1): 114-116. |
[10] | 刘丽, 霍琰. 产褥期棒状杆菌感染致坏死性子宫肌炎一例[J]. 国际妇产科学杂志, 2025, 52(1): 117-120. |
[11] | 张云凤, 张宛玥, 卢悦, 王阳阳, 井佳雨, 牟婧祎, 王悦. ARID1A与PIK3CA突变在卵巢子宫内膜异位症恶变中的研究进展[J]. 国际妇产科学杂志, 2025, 52(1): 19-22. |
[12] | 罗娜, 陈艳. 恶性潜能未定的子宫平滑肌瘤宫腔镜切除术后复发全子宫切除术一例[J]. 国际妇产科学杂志, 2025, 52(1): 42-45. |
[13] | 石百超, 王宇, 常惠, 卢凤娟, 关木馨, 余健楠, 吴效科. 中药及天然产物改善子宫内膜异位症的作用机制[J]. 国际妇产科学杂志, 2025, 52(1): 66-71. |
[14] | 李恒兵, 袁海宁, 张云洁, 张江琳, 郭子珍, 孙振高. 外泌体通过调控免疫微环境治疗慢性子宫内膜炎的研究进展[J]. 国际妇产科学杂志, 2025, 52(1): 72-78. |
[15] | 豆苗苗, 郑婧, 张航, 杨博, 张春洁, 刘志杰. 子宫附腔畸形的诊断及预后分析一例[J]. 国际妇产科学杂志, 2025, 52(1): 84-88. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||