[1] |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019[J]. CA Cancer J Clin, 2019,69(1):7-34. doi: 10.3322/caac.21551.
doi: 10.3322/caac.21551
|
[2] |
Lee SJ, Yang A, Wu TC, et al. Immunotherapy for human papillomavirus-associated disease and cervical cancer: review of clinical and translational research[J]. J Gynecol Oncol, 2016,27(5):e51. doi: 10.3802/jgo.2016.27.e51.
doi: 10.3802/jgo.2016.27.e51
|
[3] |
Chan CK, Aimagambetova G, Ukybassova T, et al. Human Papillomavirus Infection and Cervical Cancer: Epidemiology, Screening, and Vaccination-Review of Current Perspectives[J]. J Oncol, 2019,2019:3257939. doi: 10.1155/2019/3257939.
doi: 10.1155/2019/3257939
|
[4] |
Mühr L, Eklund C, Dillner J. Towards quality and order in human papillomavirus research[J]. Virology, 2018,519:74-76. doi: 10.1016/j.virol.2018.04.003.
doi: 10.1016/j.virol.2018.04.003
|
[5] |
Allouch S, Malki A, Allouch A, et al. High-Risk HPV Oncoproteins and PD-1/PD-L1 Interplay in Human Cervical Cancer: Recent Evidence and Future Directions[J]. Front Oncol, 2020,10:914. doi: 10.3389/fonc.2020.00914.
doi: 10.3389/fonc.2020.00914
|
[6] |
Menéndez-Menéndez J, Hermida-Prado F, Granda-Díaz R, et al. Deciphering the Molecular Basis of Melatonin Protective Effects on Breast Cells Treated with Doxorubicin: TWIST1 a Transcription Factor Involved in EMT and Metastasis, a Novel Target of Melatonin[J]. Cancers (Basel), 2019,11(7) doi: 10.3390/cancers11071011.
doi: 10.3390/cancers11071011
|
[7] |
Li X, Wang R, Fan P, et al. A Comprehensive Analysis of Key Immune Checkpoint Receptors on Tumor-Infiltrating T Cells From Multiple Types of Cancer[J]. Front Oncol, 2019,9:1066. doi: 10.3389/fonc.2019.01066.
doi: 10.3389/fonc.2019.01066
|
[8] |
Cheng MA, Farmer E, Huang C, et al. Therapeutic DNA Vaccines for Human Papillomavirus and Associated Diseases[J]. Hum Gene Ther, 2018,29(9):971-996. doi: 10.1089/hum.2017.197.
doi: 10.1089/hum.2017.197
pmid: 29316817
|
[9] |
Menderes G, Black J, Schwab CL, et al. Immunotherapy and targeted therapy for cervical cancer: an update[J]. Expert Rev Anticancer The, 2016,16(1):83-98. doi: 10.1586/14737140.2016.1121108.
doi: 10.1586/14737140.2016.1121108
|
[10] |
Chabeda A, Yanez R, Lamprecht R, et al. Therapeutic vaccines for high-risk HPV-associated diseases[J]. Papillomavirus Res, 2018,5:46-58. doi: 10.1016/j.pvr.2017.12.006.
doi: S2405-8521(17)30057-5
pmid: 29277575
|
[11] |
Vonsky M, Shabaeva M, Runov A, et al. Carcinogenesis Associated with Human Papillomavirus Infection. Mechanisms and Potential for Immunotherapy[J]. Biochemistry (Mosc), 2019,84(7):782-799. doi: 10.1134/S0006297919070095.
doi: 10.1134/S0006297919070095
|
[12] |
Peter M, Kühnel F. Oncolytic Adenovirus in Cancer Immunotherapy[J]. Cancers (Basel), 2020,12(11):3354. doi: 10.3390/cancers12113354.
doi: 10.3390/cancers12113354
|
[13] |
Hasan Y, Furtado L, Tergas A, et al. A Phase 1 Trial Assessing the Safety and Tolerability of a Therapeutic DNA Vaccination Against HPV16 and HPV18 E6/E7 Oncogenes After Chemoradiation for Cervical Cancer[J]. Int J Radiat Oncol Biol Phys, 2020,107(3):487-498. doi: 10.1016/j.ijrobp.2020.02.031.
doi: 10.1016/j.ijrobp.2020.02.031
|
[14] |
Arbyn M, Xu L, Simoens C, et al. Prophylactic vaccination against human papillomaviruses to prevent cervical cancer and its precursors[J]. Cochrane Database Syst Rev, 2018,5(5):CD009069. doi: 10.1002/14651858.CD009069.pub3.
doi: 10.1002/14651858.CD009069.pub3
|
[15] |
Østergård S, Vorbeck CS, Meinert M. Vulvar intraepithelial neoplasia[J]. Ugeskr Laeger, 2018,180(20):V12170931.
|
[16] |
Kim TJ, Jin HT, Hur SY, et al. Clearance of persistent HPV infection and cervical lesion by therapeutic DNA vaccine in CIN3 patients[J]. Nat Commun, 2014,5:5317. doi: 10.1038/ncomms6317.
doi: 10.1038/ncomms6317
|
[17] |
Çuburu N, Khan S, Thompson CD, et al. Adenovirus vector-based prime-boost vaccination via heterologous routes induces cervicovaginal CD8(+) T cell responses against HPV16 oncoproteins[J]. Int J Cancer, 2018,142(7):1467-1479. doi: 10.1002/ijc.31166.
doi: 10.1002/ijc.31166
|
[18] |
Kim TW, Hung CF, Juang J, et al. Enhancement of suicidal DNA vaccine potency by delaying suicidal DNA-induced cell death[J]. Gene Ther, 2004,11(3):336-342. doi: 10.1038/sj.gt.3302164.
doi: 10.1038/sj.gt.3302164
pmid: 14737094
|
[19] |
Fakhr E, Modic Ž, Cid-Arregui A. Recent developments in immunotherapy of cancers caused by human papillomaviruses[J]. Immunology, 2021,163(1):33-45. doi: 10.1111/imm.13285.
doi: 10.1111/imm.13285
|
[20] |
Schetters S, Jong W, Horrevorts SK, et al. Outer membrane vesicles engineered to express membrane-bound antigen program dendritic cells for cross-presentation to CD8(+) T cells[J]. Acta Biomater, 2019,91:248-257. doi: 10.1016/j.actbio.2019.04.033.
doi: S1742-7061(19)30276-4
pmid: 31003032
|
[21] |
Santin AD, Bellone S, Palmieri M, et al. HPV16/18 E7-pulsed dendritic cell vaccination in cervical cancer patients with recurrent disease refractory to standard treatment modalities[J]. Gynecol Oncol, 2006,100(3):469-478. doi: 10.1016/j.ygyno.2005.09.040.
doi: 10.1016/j.ygyno.2005.09.040
|
[22] |
Aipire A, Li J, Yuan P, et al. Glycyrrhiza uralensis water extract enhances dendritic cell maturation and antitumor efficacy of HPV dendritic cell-based vaccine[J]. Sci Rep, 2017,7:43796. doi: 10.1038/srep43796.
doi: 10.1038/srep43796
pmid: 28272545
|
[23] |
Zsiros E, Tsuji T, Odunsi K. Adoptive T-cell therapy is a promising salvage approach for advanced or recurrent metastatic cervical cancer[J]. J Clin Oncol, 2015,33(14):1521-1522. doi: 10.1200/JCO.2014.60.6566.
doi: 10.1200/JCO.2014.60.6566
pmid: 25847926
|
[24] |
Jin BY, Campbell TE, Draper LM, et al. Engineered T cells targeting E7 mediate regression of human papillomavirus cancers in a murine model[J]. JCI Insight, 2018,3(8):e99488. doi: 10.1172/jci.insight.99488.
doi: 10.1172/jci.insight.99488
|
[25] |
Singh N, Shi J, June CH, et al. Genome-Editing Technologies in Adoptive T Cell Immunotherapy for Cancer[J]. Curr Hematol Malig Rep, 2017,12(6):522-529. doi: 10.1007/s11899-017-0417-7.
doi: 10.1007/s11899-017-0417-7
|
[26] |
Irvine DJ, Dane EL. Enhancing cancer immunotherapy with nanomedicine[J]. Nat Rev Immunol, 2020,20(5):321-334. doi: 10.1038/s41577-019-0269-6.
doi: 10.1038/s41577-019-0269-6
|
[27] |
Zhuo M, Chi Y, Wang Z. The adverse events associated with combination immunotherapy in cancers: Challenges and chances[J]. Asia Pac J Clin Oncol, 2020,16(5):e154-e159. doi: 10.1111/ajco.13365.
doi: 10.1111/ajco.13365
|
[28] |
Perez CR, De Palma M. Engineering dendritic cell vaccines to improve cancer immunotherapy[J]. Nat Commun, 2019,10(1):5408. doi: 10.1038/s41467-019-13368-y.
doi: 10.1038/s41467-019-13368-y
|
[29] |
Lei X, Lei Y, Li JK, et al. Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy[J]. Cancer Lett, 2020,470:126-133. doi: 10.1016/j.canlet.2019.11.009.
doi: S0304-3835(19)30564-6
pmid: 31730903
|