国际妇产科学杂志 ›› 2022, Vol. 49 ›› Issue (4): 361-365.doi: 10.12280/gjfckx.20220026
• 妇科肿瘤研究:综述 • 下一篇
收稿日期:
2022-01-11
出版日期:
2022-08-15
发布日期:
2022-08-19
通讯作者:
胡元晶
E-mail:tdjhyj@hotmail.com
基金资助:
PING Quan-hong, LI Na, HU Yuan-jing()
Received:
2022-01-11
Published:
2022-08-15
Online:
2022-08-19
Contact:
HU Yuan-jing
E-mail:tdjhyj@hotmail.com
摘要:
卵巢癌、子宫内膜癌和宫颈癌是妇科常见的三大恶性肿瘤,尽管随着手术、放化疗等综合治疗的不断发展,妇科常见恶性肿瘤患者的预后得到了大幅提升,但由于早期没有明显症状且缺乏准确诊断或发现时已是晚期,仍有相当比例的患者预后不佳,生命受到严重威胁。因此,寻找新的治疗靶点和监测疗效的有效标志物至关重要。代谢组学(metabonomics)是肿瘤研究领域颇受关注的研究方法,其理论基础是肿瘤存在有别于正常组织的代谢特征,肿瘤独特的代谢特征与生物表型存在紧密的关联。代谢组学通过对生物系统中内源性代谢物进行全面分析,阐明肿瘤在发生和进展过程中某些关键生化途径的重塑机制,并对其进行解析与精准干预。综述代谢组学在妇科常见肿瘤治疗和预后评估中的应用,预期其可为妇科常见肿瘤的个性化、精准化治疗提供潜在靶点,为妇科常见肿瘤筛选预后生物标志物提供重要参考。
平全红, 李娜, 胡元晶. 代谢组学在妇科常见肿瘤治疗和预后评估中的应用[J]. 国际妇产科学杂志, 2022, 49(4): 361-365.
PING Quan-hong, LI Na, HU Yuan-jing. Application of Metabonomics in the Treatment and Prognosis of Common Gynecological Tumors[J]. Journal of International Obstetrics and Gynecology, 2022, 49(4): 361-365.
[1] |
Vsiansky V, Svobodova M, Gumulec J, et al. Prognostic Significance of Serum Free Amino Acids in Head and Neck Cancers[J]. Cells, 2019, 8(5):428. doi: 10.3390/cells8050428.
doi: 10.3390/cells8050428 |
[2] |
Wang YP, Li JT, Qu J, et al. Metabolite sensing and signaling in cancer[J]. J Biol Chem, 2020, 295(33):11938-11946. doi: 10.1074/jbc.REV119.007624.
doi: 10.1074/jbc.REV119.007624 |
[3] |
Kuroki L, Guntupalli SR. Treatment of epithelial ovarian cancer[J]. BMJ, 2020, 371:m3773. doi: 10.1136/bmj.m3773.
doi: 10.1136/bmj.m3773 |
[4] |
Lertkhachonsuk AA, Buranawongtrakoon S, Lekskul N, et al. Serum CA19-9, CA-125 and CEA as tumor markers for mucinous ovarian tumors[J]. J Obstet Gynaecol Res, 2020, 46(11):2287-2291. doi: 10.1111/jog.14427.
doi: 10.1111/jog.14427 |
[5] |
Tiss A, Timms JF, Smith C, et al. Highly accurate detection of ovarian cancer using CA125 but limited improvement with serum matrix-assisted laser desorption/ionization time-of-flight mass spectrometry profiling[J]. Int J Gynecol Cancer, 2010, 20(9):1518-1524.
pmid: 21370595 |
[6] |
Ahmed-Salim Y, Galazis N, Bracewell-Milnes T, et al. The application of metabolomics in ovarian cancer management: a systematic review[J]. Int J Gynecol Cancer, 2021, 31(5):754-774. doi: 10.1136/ijgc-2020-001862.
doi: 10.1136/ijgc-2020-001862 pmid: 33106272 |
[7] |
Terry KL, Schock H, Fortner RT, et al. A Prospective Evaluation of Early Detection Biomarkers for Ovarian Cancer in the European EPIC Cohort[J]. Clin Cancer Res, 2016, 22(18):4664-4675. doi: 10.1158/1078-0432.CCR-16-0316.
doi: 10.1158/1078-0432.CCR-16-0316 |
[8] |
Peng H, Wang Y, Luo W. Multifaceted role of branched-chain amino acid metabolism in cancer[J]. Oncogene, 2020, 39(44):6747-6756. doi: 10.1038/s41388-020-01480-z.
doi: 10.1038/s41388-020-01480-z |
[9] |
Nguyen T, Kirsch BJ, Asaka R, et al. Uncovering the Role of N-Acetyl-Aspartyl-Glutamate as a Glutamate Reservoir in Cancer[J]. Cell Rep, 2019, 27(2):491-501.e6. doi: 10.1016/j.celrep.2019.03.036.
doi: S2211-1247(19)30352-3 pmid: 30970252 |
[10] |
Wu JY, Huang TW, Hsieh YT, et al. Cancer-Derived Succinate Promotes Macrophage Polarization and Cancer Metastasis via Succinate Receptor[J]. Mol Cell, 2020, 77(2):213-227.e5. doi: 10.1016/j.molcel.2019.10.023.
doi: 10.1016/j.molcel.2019.10.023 |
[11] |
Zhang J, Zhang Q, Yang Y, et al. Association Between Succinate Receptor SUCNR1 Expression and Immune Infiltrates in Ovarian Cancer[J]. Front Mol Biosci, 2020, 7:150. doi: 10.3389/fmolb.2020.00150.
doi: 10.3389/fmolb.2020.00150 |
[12] |
Xia L, Zhang H, Wang X, et al. The Role of Succinic Acid Metabolism in Ovarian Cancer[J]. Front Oncol, 2021, 11:769196. doi: 10.3389/fonc.2021.769196.
doi: 10.3389/fonc.2021.769196 |
[13] |
Muys BR, Sousa JF, Plaça JR, et al. miR-450a Acts as a Tumor Suppressor in Ovarian Cancer by Regulating Energy Metabolism[J]. Cancer Res, 2019, 79(13):3294-3305. doi: 10.1158/0008-5472.CAN-19-0490.
doi: 10.1158/0008-5472.CAN-19-0490 |
[14] |
Gan C, Huang X, Wu Y, et al. Untargeted metabolomics study and pro-apoptotic properties of B-norcholesteryl benzimidazole compounds in ovarian cancer SKOV3 cells[J]. J Steroid Biochem Mol Biol, 2020, 202:105709. doi: 10.1016/j.jsbmb.2020.105709.
doi: 10.1016/j.jsbmb.2020.105709 |
[15] |
Yang J, Zaman MM, Vlasakov I, et al. Adipocytes promote ovarian cancer chemoresistance[J]. Sci Rep, 2019, 9(1):13316. doi: 10.1038/s41598-019-49649-1.
doi: 10.1038/s41598-019-49649-1 |
[16] |
Li J, Xie H, Li A, et al. Distinct plasma lipids profiles of recurrent ovarian cancer by liquid chromatography-mass spectrometry[J]. Oncotarget, 2017, 8(29):46834-46845. doi: 10.18632/oncotarget.11603.
doi: 10.18632/oncotarget.11603 |
[17] |
Reinartz S, Lieber S, Pesek J, et al. Cell type-selective pathways and clinical associations of lysophosphatidic acid biosynthesis and signaling in the ovarian cancer microenvironment[J]. Mol Oncol, 2019, 13(2):185-201. doi: 10.1002/1878-0261.12396.
doi: 10.1002/1878-0261.12396 pmid: 30353652 |
[18] | Braun MM, Overbeek-Wager EA, Grumbo RJ. Diagnosis and Management of Endometrial Cancer[J]. Am Fam Physician, 2016, 93(6):468-474. |
[19] |
Cao Y. Adipocyte and lipid metabolism in cancer drug resistance[J]. J Clin Invest, 2019, 129(8):3006-3017. doi: 10.1172/JCI127201.
doi: 10.1172/JCI127201 |
[20] |
Pierce SR, Fang Z, Yin Y, et al. Targeting dopamine receptor D2 as a novel therapeutic strategy in endometrial cancer[J]. J Exp Clin Cancer Res, 2021, 40(1):61. doi: 10.1186/s13046-021-01842-9.
doi: 10.1186/s13046-021-01842-9 |
[21] |
Altadill T, Dowdy TM, Gill K, et al. Metabolomic and Lipidomic Profiling Identifies The Role of the RNA Editing Pathway in Endometrial Carcinogenesis[J]. Sci Rep, 2017, 7(1):8803. doi: 10.1038/s41598-017-09169-2.
doi: 10.1038/s41598-017-09169-2 pmid: 28821813 |
[22] |
Herbert A. AD AR and Immune Silencing in Cancer[J]. Trends Cancer, 2019, 5(5):272-282. doi: 10.1016/j.trecan.2019.03.004.
doi: S2405-8033(19)30069-X pmid: 31174840 |
[23] |
Dalla Pozza E, Dando I, Pacchiana R, et al. Regulation of succinate dehydrogenase and role of succinate in cancer[J]. Semin Cell Dev Biol, 2020, 98:4-14. doi: 10.1016/j.semcdb.2019.04.013.
doi: 10.1016/j.semcdb.2019.04.013 |
[24] |
Jiang S, Yan W. Succinate in the cancer-immune cycle[J]. Cancer Lett, 2017, 390:45-47. doi: 10.1016/j.canlet.2017.01.019.
doi: 10.1016/j.canlet.2017.01.019 |
[25] |
Iplik ES, Catmakas T, Cakmakoglu B. A new target for the treatment of endometrium cancer by succinic acid[J]. Cell Mol Biol(Noisy-le-grand), 2018, 64(1):60-63. doi: 10.14715/cmb/2018.64.1.11.
doi: 10.14715/cmb/2018.64.1.11 |
[26] |
Hu G, Zhang J, Zhou X, et al. Roles of estrogen receptor α and β in the regulation of proliferation in endometrial carcinoma[J]. Pathol Res Pract, 2020, 216(10):153149. doi: 10.1016/j.prp.2020.153149.
doi: 10.1016/j.prp.2020.153149 |
[27] |
Audet-Delage Y, Grégoire J, Caron P, et al. Estradiol metabolites as biomarkers of endometrial cancer prognosis after surgery[J]. J Steroid Biochem Mol Biol, 2018, 178:45-54. doi: 10.1016/j.jsbmb.2017.10.021.
doi: 10.1016/j.jsbmb.2017.10.021 |
[28] |
Liput KP, Lepczyński A, Ogłuszka M, et al. Effects of Dietary n-3 and n-6 Polyunsaturated Fatty Acids in Inflammation and Cancerogenesis[J]. Int J Mol Sci, 2021, 22(13):6965. doi: 10.3390/ijms22136965.
doi: 10.3390/ijms22136965 |
[29] |
Lunde S, Nguyen HT, Petersen KK, et al. Chronic Postoperative Pain After Hysterectomy for Endometrial Cancer: A Metabolic Profiling Study[J]. Mol Pain, 2020, 16:1744806920923885. doi: 10.1177/1744806920923885.
doi: 10.1177/1744806920923885 |
[30] |
Kawaguchi K, Kinameri A, Suzuki S, et al. The cancer-promoting gene fatty acid-binding protein 5 (FABP5) is epigenetically regulated during human prostate carcinogenesis[J]. Biochem J, 2016, 473(4):449-461. doi: 10.1042/BJ20150926.
doi: 10.1042/BJ20150926 pmid: 26614767 |
[31] |
Zhang C, Liao Y, Liu P, et al. FABP5 promotes lymph node metastasis in cervical cancer by reprogramming fatty acid metabolism[J]. Theranostics, 2020, 10(15):6561-6580. doi: 10.7150/thno.44868.
doi: 10.7150/thno.44868 |
[32] |
Hayashi Y, Yokota A, Harada H, et al. Hypoxia/pseudohypoxia-mediated activation of hypoxia-inducible factor-1α in cancer[J]. Cancer Sci, 2019, 110(5):1510-1517. doi: 10.1111/cas.13990.
doi: 10.1111/cas.13990 |
[33] |
Castelli S, Ciccarone F, Tavian D, et al. ROS-dependent HIF1α activation under forced lipid catabolism entails glycolysis and mitophagy as mediators of higher proliferation rate in cervical cancer cells[J]. J Exp Clin Cancer Res, 2021, 40(1):94. doi: 10.1186/s13046-021-01887-w.
doi: 10.1186/s13046-021-01887-w |
[34] |
Xu LX, Hao LJ, Ma JQ, et al. SIRT3 promotes the invasion and metastasis of cervical cancer cells by regulating fatty acid synthase[J]. Mol Cell Biochem, 2020, 464(1/2):11-20. doi: 10.1007/s11010-019-03644-2.
doi: 10.1007/s11010-019-03644-2 |
[35] |
Dong B, Yang Y, Han A, et al. Ectopic expression of HSDL2 is related to cell proliferation and prognosis in breast cancer[J]. Cancer Manag Res, 2019, 11:6531-6542. doi: 10.2147/CMAR.S205316.
doi: 10.2147/CMAR.S205316 |
[36] |
Yang Y, Han A, Wang X, et al. Lipid metabolism regulator human hydroxysteroid dehydrogenase-like 2 (HSDL2) modulates cervical cancer cell proliferation and metastasis[J]. J Cell Mol Med, 2021, 25(10):4846-4859. doi: 10.1111/jcmm.16461.
doi: 10.1111/jcmm.16461 |
[37] |
Gadducci A, Cosio S. Neoadjuvant Chemotherapy in Locally Advanced Cervical Cancer: Review of the Literature and Perspectives of Clinical Research[J]. Anticancer Res, 2020, 40(9):4819-4828. doi: 10.21873/anticanres.14485.
doi: 10.21873/anticanres.14485 pmid: 32878770 |
[38] |
Song Y, Liu Y, Lin M, et al. Efficacy of neoadjuvant platinum-based chemotherapy during the second and third trimester of pregnancy in women with cervical cancer: an updated systematic review and meta-analysis[J]. Drug Des Devel Ther, 2018, 13:79-102. doi: 10.2147/DDDT.S186966.
doi: 10.2147/DDDT.S186966 |
[39] |
Hou Y, Yin M, Sun F, et al. A metabolomics approach for predicting the response to neoadjuvant chemotherapy in cervical cancer patients[J]. Mol Biosyst, 2014, 10(8):2126-2133. doi: 10.1039/c4mb00054d.
doi: 10.1039/c4mb00054d |
[40] |
Abudula A, Rouzi N, Xu L, et al. Tissue-based metabolomics reveals potential biomarkers for cervical carcinoma and HPV infection[J]. Bosn J Basic Med Sci, 2020, 20(1):78-87. doi: 10.17305/bjbms.2019.4359.
doi: 10.17305/bjbms.2019.4359 |
[41] |
Lin F, Zheng R, Yu C, et al. Predictive role of serum cholesterol and triglycerides in cervical cancer survival[J]. Int J Gynecol Cancer, 2021, 31(2):171-176. doi: 10.1136/ijgc-2020-001333.
doi: 10.1136/ijgc-2020-001333 |
[42] |
Zhou H, Li Q, Wang T, et al. Prognostic biomarkers of cervical squamous cell carcinoma identified via plasma metabolomics[J]. Medicine(Baltimore), 2019, 98(26):e16192. doi: 10.1097/MD.0000000000016192.
doi: 10.1097/MD.0000000000016192 |
[1] | 陈晓娟, 张艳馨. 妊娠合并血友病A患者足月分娩一例[J]. 国际妇产科学杂志, 2025, 52(2): 158-160. |
[2] | 张昊晟, 魏芳. Nectin-4在妇科恶性肿瘤中的研究进展[J]. 国际妇产科学杂志, 2025, 52(2): 165-168. |
[3] | 郭竞, 张茂祥, 周春鹤, 刘思宁, 李惠艳. 孟德尔随机化在暴露因素与宫颈癌因果关系中的研究进展[J]. 国际妇产科学杂志, 2025, 52(2): 169-174. |
[4] | 柴玲娜, 李艳丽, 石洁, 高晗, 欧阳夕颜, 程诗语. 吲哚菁绿示踪前哨淋巴结在早期宫颈癌中的应用[J]. 国际妇产科学杂志, 2025, 52(2): 175-179. |
[5] | 林环宇, 邵小光, 路旭宏, 王秋月, 魏巍, 佟春艳. Web of Science核心数据库2004—2024年女性恶性肿瘤患者生育力保存的研究现状及热点[J]. 国际妇产科学杂志, 2025, 52(2): 180-186. |
[6] | 江爱美, 张信美. 腹壁子宫内膜异位症的治疗进展[J]. 国际妇产科学杂志, 2025, 52(2): 211-216. |
[7] | 白耀俊, 王思瑶, 令菲菲, 张森淮, 李红丽, 刘畅. Trop-2及靶向Trop-2抗体偶联药物在妇科恶性肿瘤中的应用进展[J]. 国际妇产科学杂志, 2025, 52(1): 1-7. |
[8] | 侯春艳, 杜秀萍. 妊娠中晚期自发性子宫破裂二例[J]. 国际妇产科学杂志, 2025, 52(1): 110-113. |
[9] | 钟佩蕖, 招丽坚, 邹欣欣. 残角子宫妊娠行期待治疗至妊娠晚期一例[J]. 国际妇产科学杂志, 2025, 52(1): 114-116. |
[10] | 胡明珠, 刘丽文, 黄蕾. HIV感染女性的阴道微生态变化与宫颈癌的相关研究[J]. 国际妇产科学杂志, 2025, 52(1): 13-18. |
[11] | 张云凤, 张宛玥, 卢悦, 王阳阳, 井佳雨, 牟婧祎, 王悦. ARID1A与PIK3CA突变在卵巢子宫内膜异位症恶变中的研究进展[J]. 国际妇产科学杂志, 2025, 52(1): 19-22. |
[12] | 李楠, 彭二玄, 刘风花. 卵巢上皮性癌脑转移20例临床分析[J]. 国际妇产科学杂志, 2025, 52(1): 23-27. |
[13] | 潘琪, 冯同富, 金晶, 吴莺, 杜欣. 腹腔镜切除成人腹膜后巨大成熟性畸胎瘤一例[J]. 国际妇产科学杂志, 2025, 52(1): 28-31. |
[14] | 贾炎峰, 吴珍珍, 王维红, 王玥元, 李娟. 原发性卵巢腺鳞癌一例[J]. 国际妇产科学杂志, 2025, 52(1): 32-36. |
[15] | 宋丽芳, 吴珍珍, 毛宝宏, 赵小丽, 刘青. 卵巢癌腹股沟淋巴结孤立转移一例[J]. 国际妇产科学杂志, 2025, 52(1): 37-41. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||