国际妇产科学杂志 ›› 2022, Vol. 49 ›› Issue (5): 481-485.doi: 10.12280/gjfckx.20220451
• 普通妇科疾病及相关研究:综述 • 下一篇
收稿日期:
2022-06-03
出版日期:
2022-10-15
发布日期:
2022-10-24
通讯作者:
王莉
E-mail:wanglisa1101@163.com
基金资助:
Received:
2022-06-03
Published:
2022-10-15
Online:
2022-10-24
Contact:
WANG Li
E-mail:wanglisa1101@163.com
摘要:
子宫内膜异位症(endometriosis,EMs)虽为一种常见的妇科良性疾病,却有侵袭、浸润、远处转移等恶性行为。铁死亡(ferroptosis)是一种新发现的程序性细胞死亡,主要特征表现为细胞内游离二价铁(Fe2+)过量介导芬顿反应产生羟基自由基,细胞内抗氧化酶谷胱甘肽过氧化物酶4受抑制,细胞膜脂质发生过氧化导致细胞死亡。EMs病灶表现为铁死亡抵抗,这一特征导致异位内膜清除障碍并促进其增殖与迁移;而部分细胞又可通过铁死亡促进血管生成。铁死亡导致的精子和卵细胞损伤及胚胎毒性则进一步导致EMs相关性不孕。
彭佩轩, 王莉. 铁死亡在子宫内膜异位症中的研究进展[J]. 国际妇产科学杂志, 2022, 49(5): 481-485.
PENG Pei-xuan, WANG Li. Research Progress of Ferroptosis in Endometriosis[J]. Journal of International Obstetrics and Gynecology, 2022, 49(5): 481-485.
[1] |
Koninckx PR, Ussia A, Adamyan L, et al. Pathogenesis of endometriosis: the genetic/epigenetic theory[J]. Fertil Steril, 2019, 111(2):327-340. doi: 10.1016/j.fertnstert.2018.10.013.
doi: 10.1016/j.fertnstert.2018.10.013 |
[2] |
Signorile PG, Viceconte R, Baldi A. New Insights in Pathogenesis of Endometriosis[J]. Front Med(Lausanne), 2022, 9:879015. doi: 10.3389/ fmed.2022.879015.
doi: 10.3389/ fmed.2022.879015 |
[3] |
Li B, Duan H, Wang S, et al. Ferroptosis resistance mechanisms in endometriosis for diagnostic model establishment[J]. Reprod Biomed Online, 2021, 43(1):127-138. doi: 10.1016/j.rbmo.2021.04.002.
doi: 10.1016/j.rbmo.2021.04.002 pmid: 33992553 |
[4] |
Mishima E, Conrad M. Nutritional and Metabolic Control of Ferroptosis[J]. Annu Rev Nutr, 2022, 42:275-309. doi: 10.1146/annurev-nutr-062320-114541.
doi: 10.1146/annurev-nutr-062320-114541 pmid: 35650671 |
[5] |
Alvarado-Díaz CP, Núñez MT, Devoto L, et al. Endometrial expression and in vitro modulation of the iron transporter divalent metal transporter-1: implications for endometriosis[J]. Fertil Steril, 2016, 106(2):393-401. doi: 10.1016/j.fertnstert.2016.04.002.
doi: 10.1016/j.fertnstert.2016.04.002 pmid: 27117373 |
[6] |
Imanaka S, Maruyama S, Kimura M, et al. Relationship between Cyst Fluid Concentrations of Iron and Severity of Dysmenorrhea in Patients with Ovarian Endometrioma[J]. Gynecol Obstet Invest, 2021, 86(1/2):185-192. doi: 10.1159/000514972.
doi: 10.1159/000514972 |
[7] |
Nanda A, K T, Banerjee P, et al. Cytokines, Angiogenesis, and Extracellular Matrix Degradation are Augmented by Oxidative Stress in Endometriosis[J]. Ann Lab Med, 2020, 40(5):390-397. doi: 10.3343/alm.2020.40.5.390.
doi: 10.3343/alm.2020.40.5.390 pmid: 32311852 |
[8] |
Amreen S, Kumar P, Gupta P, et al. Evaluation of Oxidative Stress and Severity of Endometriosis[J]. J Hum Reprod Sci, 2019, 12(1):40-46. doi: 10.4103/jhrs.JHRS_27_17.
doi: 10.4103/jhrs.JHRS_27_17 pmid: 31007466 |
[9] |
Woo JH, Choi YS, Choi JH. Iron-Storage Protein Ferritin Is Upregulated in Endometriosis and Iron Overload Contributes to a Migratory Phenotype[J]. Biomedicines, 2020, 8(11):454. doi: 10.3390/biomedicines8110454.
doi: 10.3390/biomedicines8110454 |
[10] |
Shigetomi H, Imanaka S, Kobayashi H. Effects of iron-related compounds and bilirubin on redox homeostasis in endometriosis and its malignant transformations[J]. Horm Mol Biol Clin Investig,2021 Dec 2. doi: 10.1515/hmbci-2021-0065. Epub ahead of print.
doi: 10.1515/hmbci-2021-0065 |
[11] |
Ramírez-Pavez TN, Martínez-Esparza M, Ruiz-Alcaraz AJ, et al. The Role of Peritoneal Macrophages in Endometriosis[J]. Int J Mol Sci, 2021, 22(19):10792. doi: 10.3390/ijms221910792.
doi: 10.3390/ijms221910792 |
[12] |
Wan Y, Gu C, Kong J, et al. Long noncoding RNA ADAMTS9-AS1 represses ferroptosis of endometrial stromal cells by regulating the miR-6516-5p/GPX4 axis in endometriosis[J]. Sci Rep, 2022, 12(1):2618. doi: 10.1038/s41598-022-04963-z.
doi: 10.1038/s41598-022-04963-z pmid: 35173188 |
[13] |
Wan Y, Song Y, Chen J, et al. Upregulated Fibulin-1 Increased Endometrial Stromal Cell Viability and Migration by Repressing EFEMP1-Dependent Ferroptosis in Endometriosis[J]. Biomed Res Int, 2022, 2022:4809415. doi: 10.1155/2022/4809415.
doi: 10.1155/2022/4809415 |
[14] |
Srivastava SR, Zadafiya P, Mahalakshmi R. Hydrophobic Mismatch Modulates Stability and Plasticity of Human Mitochondrial VDAC2[J]. Biophys J, 2018, 115(12):2386-2394. doi: 10.1016/j.bpj.2018.11.001.
doi: S0006-3495(18)31220-7 pmid: 30503532 |
[15] |
Liang Z, Wu Q, Wang H, et al. Silencing of lncRNA MALAT1 facilitates erastin-induced ferroptosis in endometriosis through miR-145-5p/MUC1 signaling[J]. Cell Death Discov, 2022, 8(1):190. doi: 10.1038/s41420-022-00975-w.
doi: 10.1038/s41420-022-00975-w |
[16] |
Ng SW, Norwitz SG, Taylor HS, et al. Endometriosis: The Role of Iron Overload and Ferroptosis[J]. Reprod Sci, 2020, 27(7):1383-1390. doi: 10.1007/s43032-020-00164-z.
doi: 10.1007/s43032-020-00164-z |
[17] |
Sokalska A, Hawkins AB, Yamaguchi T, et al. Lipophilic statins inhibit growth and reduce invasiveness of human endometrial stromal cells[J]. J Assist Reprod Genet, 2019, 36(3):535-541. doi: 10.1007/s10815-018-1352-9.
doi: 10.1007/s10815-018-1352-9 |
[18] |
Almassinokiani F, Mehdizadeh A, Sariri E, et al. Effects of simvastatin in prevention of pain recurrences after surgery for endometriosis[J]. Med Sci Monit, 2013, 19:534-539. doi: 10.12659/MSM.883967.
doi: 10.12659/MSM.883967 |
[19] |
Mori M, Ito F, Shi L, et al. Ovarian endometriosis-associated stromal cells reveal persistently high affinity for iron[J]. Redox Biol, 2015, 6:578-586. doi: 10.1016/j.redox.2015.10.001.
doi: S2213-2317(15)00152-4 pmid: 26498255 |
[20] |
Zhou Y, Zhao X, Zhang L, et al. Iron overload inhibits cell proliferation and promotes autophagy via PARP1/SIRT1 signaling in endometriosis and adenomyosis[J]. Toxicology, 2022, 465:153050. doi: 10.1016/j.tox.2021.153050.
doi: 10.1016/j.tox.2021.153050 |
[21] |
Li G, Lin Y, Zhang Y, et al. Endometrial stromal cell ferroptosis promotes angiogenesis in endometriosis[J]. Cell Death Discov, 2022, 8(1):29. doi: 10.1038/s41420-022-00821-z.
doi: 10.1038/s41420-022-00821-z pmid: 35039492 |
[22] |
Li Y, Zeng X, Lu D, et al. Erastin induces ferroptosis via ferroportin-mediated iron accumulation in endometriosis[J]. Hum Reprod, 2021, 36(4):951-964. doi: 10.1093/humrep/deaa363.
doi: 10.1093/humrep/deaa363 |
[23] |
Arumugam K. Endometriosis and infertility: raised iron concentration in the peritoneal fluid and its effect on the acrosome reaction[J]. Hum Reprod, 1994, 9(6):1153-1157. doi: 10.1093/oxfordjournals.humrep.a138649.
doi: 10.1093/oxfordjournals.humrep.a138649 pmid: 7962392 |
[24] |
Machado-Neves M. Effect of heavy metals on epididymal morphology and function: An integrative review[J]. Chemosphere, 2022, 291(Pt 2):133020. doi: 10.1016/j.chemosphere.2021.133020.
doi: 10.1016/j.chemosphere.2021.133020 |
[25] |
Cacciottola L, Donnez J, Dolmans MM. Oxidative stress, mitochondria, and infertility: Is the relationship fully established?[J]. Fertil Steril, 2021, 116(2):306-308. doi: 10.1016/j.fertnstert.2021.04.026.
doi: 10.1016/j.fertnstert.2021.04.026 pmid: 34016431 |
[26] |
Wang L, Tang J, Wang L, et al. Oxidative stress in oocyte aging and female reproduction[J]. J Cell Physiol, 2021, 236(12):7966-7983. doi: 10.1002/jcp.30468.
doi: 10.1002/jcp.30468 pmid: 34121193 |
[27] |
Li A, Ni Z, Zhang J, et al. Transferrin Insufficiency and Iron Overload in Follicular Fluid Contribute to Oocyte Dysmaturity in Infertile Women With Advanced Endometriosis[J]. Front Endocrinol(Lausanne), 2020, 11:391. doi: 10.3389/fendo.2020.00391.
doi: 10.3389/fendo.2020.00391 |
[28] |
Cacciottola L, Donnez J, Dolmans MM. Can Endometriosis-Related Oxidative Stress Pave the Way for New Treatment Targets?[J]. Int J Mol Sci, 2021, 22(13):7138. doi: 10.3390/ijms22137138.
doi: 10.3390/ijms22137138 |
[29] |
Chang LC, Chiang SK, Chen SE, et al. Heme oxygenase-1 mediates BAY 11-7085 induced ferroptosis[J]. Cancer Lett, 2018, 416:124-137. doi: 10.1016/j.canlet.2017.12.025.
doi: 10.1016/j.canlet.2017.12.025 |
[30] |
Li S, Zhou Y, Huang Q, et al. Iron overload in endometriosis peritoneal fluid induces early embryo ferroptosis mediated by HMOX1[J]. Cell Death Discov, 2021, 7(1):355. doi: 10.1038/s41420-021-00751-2.
doi: 10.1038/s41420-021-00751-2 pmid: 34782602 |
[31] |
Chen X, Zhou Y, Wu D, et al. Iron overload compromises preimplantation mouse embryo development[J]. Reprod Toxicol, 2021, 105:156-165. doi: 10.1016/j.reprotox.2021.08.010.
doi: 10.1016/j.reprotox.2021.08.010 pmid: 34481919 |
[1] | 曹秀蓉, 周文柏, 范香, 王逸斐, 朱鹏峰. 单细胞RNA测序解析子宫内膜异位症血管生成机制[J]. 国际妇产科学杂志, 2025, 52(2): 199-205. |
[2] | 殷婷, 丛慧芳. 子宫内膜异位症与痛觉敏化的免疫学研究进展[J]. 国际妇产科学杂志, 2025, 52(2): 206-210. |
[3] | 江爱美, 张信美. 腹壁子宫内膜异位症的治疗进展[J]. 国际妇产科学杂志, 2025, 52(2): 211-216. |
[4] | 徐淑颖, 徐海鹏, 王丽娜, 张阳. 锌与多囊卵巢综合征的关系[J]. 国际妇产科学杂志, 2025, 52(2): 217-221. |
[5] | 张云凤, 张宛玥, 卢悦, 王阳阳, 井佳雨, 牟婧祎, 王悦. ARID1A与PIK3CA突变在卵巢子宫内膜异位症恶变中的研究进展[J]. 国际妇产科学杂志, 2025, 52(1): 19-22. |
[6] | 齐丹丹, 朱海英, 曹海汝, 张跃敏. 线粒体功能障碍调控卵巢衰老的机制[J]. 国际妇产科学杂志, 2025, 52(1): 61-65. |
[7] | 石百超, 王宇, 常惠, 卢凤娟, 关木馨, 余健楠, 吴效科. 中药及天然产物改善子宫内膜异位症的作用机制[J]. 国际妇产科学杂志, 2025, 52(1): 66-71. |
[8] | 郭希, 刘思敏, 魏佳, 杨永秀. 卵巢及输卵管子宫内膜异位症恶变为透明细胞癌一例[J]. 国际妇产科学杂志, 2024, 51(6): 680-683. |
[9] | 张艳, 张意茗. 子宫腺肌病合并卵巢子宫内膜异位囊肿取卵术后并发盆腔脓肿一例[J]. 国际妇产科学杂志, 2024, 51(6): 717-720. |
[10] | 李慧敏, 胡雅莉, 张森淮, 马晓梅, 许飞雪. 高强度聚焦超声技术在妇产科疾病中的应用进展[J]. 国际妇产科学杂志, 2024, 51(5): 486-491. |
[11] | 高艺苇, 罗伟, 吴琼, 穆玉兰. 铁死亡与早发性卵巢功能不全的关系[J]. 国际妇产科学杂志, 2024, 51(5): 497-502. |
[12] | 郭希, 魏佳, 杨永秀. 导致子宫内膜疾病的激素通路及调节因素[J]. 国际妇产科学杂志, 2024, 51(4): 395-400. |
[13] | 孙佳凡, 徐炜, 朱姝, 王秀丽. 地诺孕素对子宫内膜异位症病灶体积的影响[J]. 国际妇产科学杂志, 2024, 51(3): 284-289. |
[14] | 许阡, 段华, 汪沙, 安圆圆. 宫颈子宫内膜异位症84例临床病例分析[J]. 国际妇产科学杂志, 2024, 51(3): 302-305. |
[15] | 寿梦娜, 黄艺舟, 周坚红. 褪黑素与早发性卵巢功能不全关系的研究进展[J]. 国际妇产科学杂志, 2024, 51(2): 133-136. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||