国际妇产科学杂志 ›› 2023, Vol. 50 ›› Issue (4): 446-449.doi: 10.12280/gjfckx.20230197
收稿日期:
2023-03-14
出版日期:
2023-08-15
发布日期:
2023-08-15
通讯作者:
张惠民,E-mail:
ZHANG Xiao-lei, DENG Dan-ni, GAO Yan, ZHANG Hui-min△()
Received:
2023-03-14
Published:
2023-08-15
Online:
2023-08-15
Contact:
ZHANG Hui-min, E-mail: 摘要:
类器官作为一种新兴的三维细胞模型,能够保留体内原始组织的组织学、生理学及遗传学特征,且具备培养时间短、增殖效率高等优势,已广泛应用于生命科学领域。近年来,类器官在子宫内膜相关研究中开展应用,突破了传统细胞和动物模型的局限,可更好地模拟子宫内膜周期性生理变化和胚胎着床特征,并在子宫内膜异位症、子宫内膜癌和不孕症等子宫内膜相关疾病的疾病建模、精准医学、药物筛选及研发方面展现出巨大潜力。综述类器官在子宫内膜基础及相关疾病转化研究中的应用进展。
张小蕾, 邓丹妮, 高燕, 张惠民. 类器官在子宫内膜及其相关疾病研究中的应用[J]. 国际妇产科学杂志, 2023, 50(4): 446-449.
ZHANG Xiao-lei, DENG Dan-ni, GAO Yan, ZHANG Hui-min. Application of Organoids in Research of Endometrium and Endometrium-Related Diseases[J]. Journal of International Obstetrics and Gynecology, 2023, 50(4): 446-449.
[1] |
Garcia-Alonso L, Handfield LF, Roberts K, et al. Mapping the temporal and spatial dynamics of the human endometrium in vivo and in vitro[J]. Nat Genet, 2021, 53(12):1698-1711. doi: 10.1038/s41588-021-00972-2.
doi: 10.1038/s41588-021-00972-2 pmid: 34857954 |
[2] |
Boretto M, Cox B, Noben M, et al. Development of organoids from mouse and human endometrium showing endometrial epithelium physiology and long-term expandability[J]. Development, 2017, 144(10):1775-1786. doi: 10.1242/dev.148478.
doi: 10.1242/dev.148478 pmid: 28442471 |
[3] |
Li M, Izpisua Belmonte JC. Organoids-Preclinical Models of Human Disease[J]. N Engl J Med, 2019, 380(6):569-579. doi: 10.1056/NEJMra1806175.
doi: 10.1056/NEJMra1806175 |
[4] |
Sato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 2009, 459(7244):262-265. doi: 10.1038/nature07935.
doi: 10.1038/nature07935 |
[5] |
Kim J, Koo BK, Knoblich JA. Human organoids: model systems for human biology and medicine[J]. Nat Rev Mol Cell Biol, 2020, 21(10):571-584. doi: 10.1038/s41580-020-0259-3.
doi: 10.1038/s41580-020-0259-3 |
[6] |
Rossi G, Manfrin A, Lutolf MP. Progress and potential in organoid research[J]. Nat Rev Genet, 2018, 19(11):671-687. doi: 10.1038/s41576-018-0051-9.
doi: 10.1038/s41576-018-0051-9 pmid: 30228295 |
[7] |
Drost J, Clevers H. Organoids in cancer research[J]. Nat Rev Cancer, 2018, 18(7):407-418. doi: 10.1038/s41568-018-0007-6.
doi: 10.1038/s41568-018-0007-6 pmid: 29692415 |
[8] |
Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid technologies[J]. Science, 2014, 345(6194):1247125. doi: 10.1126/science.1247125.
doi: 10.1126/science.1247125 |
[9] |
Bläuer M, Heinonen PK, Martikainen PM, et al. A novel organotypic culture model for normal human endometrium: regulation of epithelial cell proliferation by estradiol and medroxyprogesterone acetate[J]. Hum Reprod, 2005, 20(4):864-871. doi: 10.1093/humrep/deh722.
doi: 10.1093/humrep/deh722 pmid: 15665014 |
[10] |
Gargett CE, Schwab KE, Zillwood RM, et al. Isolation and culture of epithelial progenitors and mesenchymal stem cells from human endometrium[J]. Biol Reprod, 2009, 80(6):1136-1145. doi: 10.1095/biolreprod.108.075226.
doi: 10.1095/biolreprod.108.075226 pmid: 19228591 |
[11] |
Turco MY, Gardner L, Hughes J, et al. Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium[J]. Nat Cell Biol, 2017, 19(5):568-577. doi: 10.1038/ncb3516.
doi: 10.1038/ncb3516 pmid: 28394884 |
[12] |
Wiwatpanit T, Murphy AR, Lu Z, et al. Scaffold-Free Endometrial Organoids Respond to Excess Androgens Associated With Polycystic Ovarian Syndrome[J]. J Clin Endocrinol Metab, 2020, 105(3):769-780. doi: 10.1210/clinem/dgz100.
doi: 10.1210/clinem/dgz100 |
[13] |
Bui BN, Boretto M, Kobayashi H, et al. Organoids can be established reliably from cryopreserved biopsy catheter-derived endometrial tissue of infertile women[J]. Reprod Biomed Online, 2020, 41(3):465-473. doi: 10.1016/j.rbmo.2020.03.019.
doi: S1472-6483(20)30174-7 pmid: 32622705 |
[14] |
Cindrova-Davies T, Zhao X, Elder K, et al. Menstrual flow as a non-invasive source of endometrial organoids[J]. Commun Biol, 2021, 4(1):651. doi: 10.1038/s42003-021-02194-y.
doi: 10.1038/s42003-021-02194-y pmid: 34140633 |
[15] |
Taylor HS, Kotlyar AM, Flores VA. Endometriosis is a chronic systemic disease: clinical challenges and novel innovations[J]. Lancet, 2021, 397(10276):839-852. doi: 10.1016/S0140-6736(21)00389-5.
doi: 10.1016/S0140-6736(21)00389-5 pmid: 33640070 |
[16] |
Boretto M, Maenhoudt N, Luo X, et al. Patient-derived organoids from endometrial disease capture clinical heterogeneity and are amenable to drug screening[J]. Nat Cell Biol, 2019, 21(8):1041-1051. doi: 10.1038/s41556-019-0360-z.
doi: 10.1038/s41556-019-0360-z pmid: 31371824 |
[17] |
Esfandiari F, Favaedi R, Heidari-Khoei H, et al. Insight into epigenetics of human endometriosis organoids: DNA methylation analysis of HOX genes and their cofactors[J]. Fertil Steril, 2021, 115(1):125-137. doi: 10.1016/j.fertnstert.2020.08.1398.
doi: 10.1016/j.fertnstert.2020.08.1398 pmid: 33066976 |
[18] |
Esfandiari F, Heidari Khoei H, Saber M, et al. Disturbed progesterone signalling in an advanced preclinical model of endometriosis[J]. Reprod Biomed Online, 2021, 43(1):139-147. doi: 10.1016/j.rbmo.2020.12.011.
doi: 10.1016/j.rbmo.2020.12.011 pmid: 34049811 |
[19] |
Mc Cormack B, Maenhoudt N, Fincke V, et al. The ellagic acid metabolites urolithin A and B differentially affect growth, adhesion, motility, and invasion of endometriotic cells in vitro[J]. Hum Reprod, 2021, 36(6):1501-1519. doi: 10.1093/humrep/deab053.
doi: 10.1093/humrep/deab053 |
[20] |
Esfandiari F, Mansouri N, Shahhoseini M, et al. Endometriosis organoids: prospects and challenges[J]. Reprod Biomed Online, 2022, 45(1):5-9. doi: 10.1016/j.rbmo.2022.03.016.
doi: 10.1016/j.rbmo.2022.03.016 |
[21] |
Crosbie EJ, Kitson SJ, McAlpine JN, et al. Endometrial cancer[J]. Lancet, 2022, 399(10333):1412-1428. doi: 10.1016/S0140-6736(22)00323-3.
doi: 10.1016/S0140-6736(22)00323-3 pmid: 35397864 |
[22] |
Girda E, Huang EC, Leiserowitz GS, et al. The Use of Endometrial Cancer Patient-Derived Organoid Culture for Drug Sensitivity Testing Is Feasible[J]. Int J Gynecol Cancer, 2017, 27(8):1701-1707. doi: 10.1097/IGC.0000000000001061.
doi: 10.1097/IGC.0000000000001061 pmid: 28683005 |
[23] |
Sahoo SS, Ramanand SG, Gao Y, et al. FOXA2 suppresses endometrial carcinogenesis and epithelial-mesenchymal transition by regulating enhancer activity[J]. J Clin Invest, 2022, 132(12):e157574. doi: 10.1172/JCI157574.
doi: 10.1172/JCI157574 |
[24] |
Eritja N, Navaridas R, Ruiz-Mitjana A, et al. Endometrial PTEN Deficiency Leads to SMAD2/3 Nuclear Translocation[J]. Cancers (Basel), 2021, 13(19):4990. doi: 10.3390/cancers13194990.
doi: 10.3390/cancers13194990 |
[25] |
Tamura H, Higa A, Hoshi H, et al. Evaluation of anticancer agents using patient-derived tumor organoids characteristically similar to source tissues[J]. Oncol Rep, 2018, 40(2):635-646. doi: 10.3892/or.2018.6501.
doi: 10.3892/or.2018.6501 pmid: 29917168 |
[26] |
Zhang X, Huang P, Wang L, et al. Inhibition of BAD-Ser99 phosphorylation synergizes with PARP inhibition to ablate PTEN-deficient endometrial carcinoma[J]. Cell Death Dis, 2022, 13(6):558. doi: 10.1038/s41419-022-04982-8.
doi: 10.1038/s41419-022-04982-8 pmid: 35725817 |
[27] |
Bi J, Zhang Y, Malmrose PK, et al. Blocking autophagy overcomes resistance to dual histone deacetylase and proteasome inhibition in gynecologic cancer[J]. Cell Death Dis, 2022, 13(1):59. doi: 10.1038/s41419-022-04508-2.
doi: 10.1038/s41419-022-04508-2 pmid: 35039480 |
[28] |
Ojosnegros S, Seriola A, Godeau AL, et al. Embryo implantation in the laboratory: an update on current techniques[J]. Hum Reprod Update, 2021, 27(3):501-530. doi: 10.1093/humupd/dmaa054.
doi: 10.1093/humupd/dmaa054 pmid: 33410481 |
[29] |
Turco MY, Gardner L, Kay RG, et al. Trophoblast organoids as a model for maternal-fetal interactions during human placentation[J]. Nature, 2018, 564(7735):263-267. doi: 10.1038/s41586-018-0753-3.
doi: 10.1038/s41586-018-0753-3 |
[30] |
Li R, Zhong C, Yu Y, et al. Generation of Blastocyst-like Structures from Mouse Embryonic and Adult Cell Cultures[J]. Cell, 2019, 179(3):687-702.e18. doi: 10.1016/j.cell.2019.09.029.
doi: S0092-8674(19)31080-3 pmid: 31626770 |
[31] |
Sozen B, Cox AL, De Jonghe J, et al. Self-Organization of Mouse Stem Cells into an Extended Potential Blastoid[J]. Dev Cell, 2019, 51(6):698-712.e8. doi: 10.1016/j.devcel.2019.11.014.
doi: S1534-5807(19)30945-1 pmid: 31846649 |
[32] |
Jiang X, Li X, Fei X, et al. Endometrial membrane organoids from human embryonic stem cell combined with the 3D Matrigel for endometrium regeneration in asherman syndrome[J]. Bioact Mater, 2021, 6(11):3935-3946. doi: 10.1016/j.bioactmat.2021.04.006.
doi: 10.1016/j.bioactmat.2021.04.006 pmid: 33937593 |
[33] |
Tsolova AO, Aguilar RM, Maybin JA, et al. Pre-clinical models to study abnormal uterine bleeding (AUB)[J]. EBioMedicine, 2022, 84:104238. doi: 10.1016/j.ebiom.2022.104238.
doi: 10.1016/j.ebiom.2022.104238 |
[34] |
Yang L, Semmes EC, Ovies C, et al. Innate immune signaling in trophoblast and decidua organoids defines differential antiviral defenses at the maternal-fetal interface[J]. Elife, 2022, 11:e79794. doi: 10.7554/eLife.79794.
doi: 10.7554/eLife.79794 |
[35] |
Bishop RC, Boretto M, Rutkowski MR, et al. Murine Endometrial Organoids to Model Chlamydia Infection[J]. Front Cell Infect Microbiol, 2020, 10:416. doi: 10.3389/fcimb.2020.00416.
doi: 10.3389/fcimb.2020.00416 |
[1] | 张昊晟, 魏芳. Nectin-4在妇科恶性肿瘤中的研究进展[J]. 国际妇产科学杂志, 2025, 52(2): 165-168. |
[2] | 林环宇, 邵小光, 路旭宏, 王秋月, 魏巍, 佟春艳. Web of Science核心数据库2004—2024年女性恶性肿瘤患者生育力保存的研究现状及热点[J]. 国际妇产科学杂志, 2025, 52(2): 180-186. |
[3] | 王佳丽, 马国霞, 魏佳, 刘思敏, 杨永秀. 生殖系统T淋巴母细胞淋巴瘤一例[J]. 国际妇产科学杂志, 2025, 52(2): 195-199. |
[4] | 曹秀蓉, 周文柏, 范香, 王逸斐, 朱鹏峰. 单细胞RNA测序解析子宫内膜异位症血管生成机制[J]. 国际妇产科学杂志, 2025, 52(2): 199-205. |
[5] | 殷婷, 丛慧芳. 子宫内膜异位症与痛觉敏化的免疫学研究进展[J]. 国际妇产科学杂志, 2025, 52(2): 206-210. |
[6] | 江爱美, 张信美. 腹壁子宫内膜异位症的治疗进展[J]. 国际妇产科学杂志, 2025, 52(2): 211-216. |
[7] | 白耀俊, 王思瑶, 令菲菲, 张森淮, 李红丽, 刘畅. Trop-2及靶向Trop-2抗体偶联药物在妇科恶性肿瘤中的应用进展[J]. 国际妇产科学杂志, 2025, 52(1): 1-7. |
[8] | 张云凤, 张宛玥, 卢悦, 王阳阳, 井佳雨, 牟婧祎, 王悦. ARID1A与PIK3CA突变在卵巢子宫内膜异位症恶变中的研究进展[J]. 国际妇产科学杂志, 2025, 52(1): 19-22. |
[9] | 袁海宁, 牟珍妮, 张江琳, 李恒兵, 张云洁, 孙振高. 高龄卵母细胞质量与端粒酶的关联及机制[J]. 国际妇产科学杂志, 2025, 52(1): 57-60. |
[10] | 石百超, 王宇, 常惠, 卢凤娟, 关木馨, 余健楠, 吴效科. 中药及天然产物改善子宫内膜异位症的作用机制[J]. 国际妇产科学杂志, 2025, 52(1): 66-71. |
[11] | 李恒兵, 袁海宁, 张云洁, 张江琳, 郭子珍, 孙振高. 外泌体通过调控免疫微环境治疗慢性子宫内膜炎的研究进展[J]. 国际妇产科学杂志, 2025, 52(1): 72-78. |
[12] | 周婷, 梁宝权. 卵巢子宫内膜样癌合并Trousseau综合征一例[J]. 国际妇产科学杂志, 2024, 51(6): 676-679. |
[13] | 郭希, 刘思敏, 魏佳, 杨永秀. 卵巢及输卵管子宫内膜异位症恶变为透明细胞癌一例[J]. 国际妇产科学杂志, 2024, 51(6): 680-683. |
[14] | 张艳, 张意茗. 子宫腺肌病合并卵巢子宫内膜异位囊肿取卵术后并发盆腔脓肿一例[J]. 国际妇产科学杂志, 2024, 51(6): 717-720. |
[15] | 钟晓盈, 刘海元. 子宫内膜微生物群的组成及研究进展[J]. 国际妇产科学杂志, 2024, 51(5): 481-485. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||