[1] |
Giouleka S, Tsakiridis I, Mamopoulos A, et al. Fetal Growth Restriction: A Comprehensive Review of Major Guidelines[J]. Obstet Gynecol Surv, 2023, 78(11):690-708. doi: 10.1097/OGX.0000000000001203.
pmid: 38134339
|
[2] |
Gibbs RL, Swanson RM, Beard JK, et al. Deficits in growth, muscle mass, and body composition following placental insufficiency-induced intrauterine growth restriction persisted in lambs at 60 d of age but were improved by daily clenbuterol supplementation[J]. Transl Anim Sci, 2020, 4(Suppl 1):S53-S57. doi: 10.1093/tas/txaa097.
pmid: 33381721
|
[3] |
Felicioni F, Pereira AD, Caldeira-Brant AL, et al. Postnatal development of skeletal muscle in pigs with intrauterine growth restriction: morphofunctional phenotype and molecular mechanisms[J]. J Anat, 2020, 236(5):840-853. doi: 10.1111/joa.13152.
pmid: 31997379
|
[4] |
D′Agostin M, Di Sipio Morgia C, Vento G, et al. Long-term implications of fetal growth restriction[J]. World J Clin Cases, 2023, 11(13):2855-2863. doi: 10.12998/wjcc.v11.i13.2855.
pmid: 37215406
|
[5] |
张小雨, 高源, 齐云. 代谢性炎症在代谢综合征中的作用[J]. 生命科学, 2021, 33(1):15-25. doi: 10.13376/j.cbls/2021003.
|
[6] |
Cirillo F, Lazzeroni P, Sartori C, et al. Inflammatory Diseases and Growth: Effects on the GH-IGF Axis and on Growth Plate[J]. Int J Mol Sci, 2017, 18(9):1878. doi: 10.3390/ijms18091878.
|
[7] |
Al-Shanti N, Saini A, Faulkner SH, et al. Beneficial synergistic interactions of TNF-alpha and IL-6 in C2 skeletal myoblasts--potential cross-talk with IGF system[J]. Growth Factors, 2008, 26(2):61-73. doi: 10.1080/08977190802025024.
pmid: 18428025
|
[8] |
Dai FF, Hu M, Zhang YW, et al. TNF-α/anti-TNF-α drugs and its effect on pregnancy outcomes[J]. Expert Rev Mol Med, 2022, 24:e26. doi: 10.1017/erm.2022.18.
|
[9] |
van Loo G, Bertrand M. Death by TNF: a road to inflammation[J]. Nat Rev Immunol, 2023, 23(5):289-303. doi: 10.1038/s41577-022-00792-3.
|
[10] |
Mussbacher M, Derler M, Basílio J, et al. NF-κB in monocytes and macrophages - an inflammatory master regulator in multitalented immune cells[J]. Front Immunol, 2023, 14:1134661. doi: 10.3389/fimmu.2023.1134661.
|
[11] |
Shirakawa T, Rojasawasthien T, Inoue A, et al. Tumor necrosis factor alpha regulates myogenesis to inhibit differentiation and promote proliferation in satellite cells[J]. Biochem Biophys Res Commun, 2021, 580:35-40. doi: 10.1016/j.bbrc.2021.09.067.
|
[12] |
Nisr RB, Shah DS, Ganley IG, et al. Proinflammatory NFκB signalling promotes mitochondrial dysfunction in skeletal muscle in response to cellular fuel overloading[J]. Cell Mol Life Sci, 2019, 76(24):4887-4904. doi: 10.1007/s00018-019-03148-8.
|
[13] |
Zhang L, Li R, Wu BH, et al. Leptin activates the JAK/STAT pathway to promote angiogenesis in RF/6A cells in vitro[J]. Int J Ophthalmol, 2022, 15(4):554-559. doi: 10.18240/ijo.2022.04.05.
|
[14] |
李想, 崔迪, 邱守涛. 白细胞介素-6在骨骼肌质量调节中的作用[J]. 中国生物化学与分子生物学报, 2023, 39(6):778-788. doi: 10.13865/j.cnki.cjbmb.2022.09.1245.
|
[15] |
Choi MS, Chung YY, Kim DJ, et al. Immunoreactivity of MAPK Signaling in a Rat Model of Intrauterine Growth Retardation Induced by Uterine Artery Ligation[J]. In Vivo, 2020, 34(2):649-657. doi: 10.21873/invivo.11819.
pmid: 32111765
|
[16] |
于太永, 庞卫军, 吴江维, 等. TNF-α通过ERK和MAPK信号途径抑制猪骨骼肌成肌细胞分化[J]. 动物学报, 2007, 53(5):877-883. doi: 10.3969/j.issn.1674-5507.2007.05.012.
|
[17] |
Baeza-Raja B, Muñoz-Cánoves P. p38 MAPK-induced nuclear factor-kappaB activity is required for skeletal muscle differentiation: role of interleukin-6[J]. Mol Biol Cell, 2004, 15(4):2013-2026. doi: 10.1091/mbc.e03-08-0585.
pmid: 14767066
|
[18] |
Tseng WP, Su CM, Tang CH. FAK activation is required for TNF-alpha-induced IL-6 production in myoblasts[J]. J Cell Physiol, 2010, 223(2):389-396. doi: 10.1002/jcp.22047.
|
[19] |
Podbregar M, Lainscak M, Prelovsek O, et al. Cytokine response of cultured skeletal muscle cells stimulated with proinflammatory factors depends on differentiation stage[J]. ScientificWorldJournal, 2013, 2013:617170. doi: 10.1155/2013/617170.
|
[20] |
Daou HN. Exercise as an anti-inflammatory therapy for cancer cachexia: a focus on interleukin-6 regulation[J]. Am J Physiol Regul Integr Comp Physiol, 2020, 318(2):R296-R310. doi: 10.1152/ajpregu.00147.2019.
|
[21] |
Zanders L, Kny M, Hahn A, et al. Sepsis induces interleukin 6, gp130/JAK2/STAT3, and muscle wasting[J]. J Cachexia Sarcopenia Muscle, 2022, 13(1):713-727. doi: 10.1002/jcsm.12867.
|
[22] |
Alvarez AM, DeOcesano-Pereira C, Teixeira C, et al. IL-1β and TNF-α Modulation of Proliferated and Committed Myoblasts: IL-6 and COX-2-Derived Prostaglandins as Key Actors in the Mechanisms Involved[J]. Cells, 2020, 9(9):2005. doi: 10.3390/cells9092005.
|
[23] |
Howard EE, Pasiakos SM, Blesso CN, et al. Divergent Roles of Inflammation in Skeletal Muscle Recovery From Injury[J]. Front Physiol, 2020, 11:87. doi: 10.3389/fphys.2020.00087.
pmid: 32116792
|
[24] |
Chang EI, Hetrick B, Wesolowski SR, et al. A Two-Week Insulin Infusion in Intrauterine Growth Restricted Fetal Sheep at 75% Gestation Increases Skeletal Myoblast Replication but Did Not Restore Muscle Mass or Increase Fiber Number[J]. Front Endocrinol(Lausanne), 2021, 12:785242. doi: 10.3389/fendo.2021.785242.
|
[25] |
Chang EI, Rozance PJ, Wesolowski SR, et al. Rates of myogenesis and myofiber numbers are reduced in late gestation IUGR fetal sheep[J]. J Endocrinol, 2019, 244(2):339-352. doi: 10.1530/JOE-19-0273.
pmid: 31751294
|
[26] |
Tokita K, Shoji H, Arai Y, et al. Skeletal Muscle Insulin Resistance in a Novel Fetal Growth Restriction Model[J]. Pediatr Rep, 2023, 15(1):45-54. doi: 10.3390/pediatric15010006.
pmid: 36649006
|
[27] |
Cadaret CN, Beede KA, Riley HE, et al. Acute exposure of primary rat soleus muscle to zilpaterol HCl (β2 adrenergic agonist), TNFα, or IL-6 in culture increases glucose oxidation rates independent of the impact on insulin signaling or glucose uptake[J]. Cytokine, 2017, 96:107-113. doi: 10.1016/j.cyto.2017.03.014.
pmid: 28390265
|
[28] |
Franekova V, Storjord HI, Leivseth G, et al. Protein homeostasis in LGMDR9 (LGMD2I)-The role of ubiquitin-proteasome and autophagy-lysosomal system[J]. Neuropathol Appl Neurobiol, 2021, 47(4):519-531. doi: 10.1111/nan.12684.
|
[29] |
Saitoh T, Fujita N, Jang MH, et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production[J]. Nature, 2008, 456(7219):264-268. doi: 10.1038/nature07383.
|
[30] |
Kang R, Tang D, Lotze MT, et al. AGER/RAGE-mediated autophagy promotes pancreatic tumorigenesis and bioenergetics through the IL6-pSTAT3 pathway[J]. Autophagy, 2012, 8(6):989-991. doi: 10.4161/auto.20258.
pmid: 22722139
|
[31] |
秦倍倍. STAT3介导IL-6对细胞自噬抑制作用的研究[D]. 杭州: 浙江大学, 2014.
|
[32] |
Posont RJ, Most MS, Cadaret CN, et al. Primary myoblasts from intrauterine growth-restricted fetal sheep exhibit intrinsic dysfunction of proliferation and differentiation that coincides with enrichment of inflammatory cytokine signaling pathways[J]. J Anim Sci, 2022, 100(8):skac145. doi: 10.1093/jas/skac145.
|
[33] |
Liang Z, Zhang T, Liu H, et al. Inflammaging: The ground for sarcopenia?[J]. Exp Gerontol, 2022, 168:111931. doi: 10.1016/j.exger.2022.111931.
|
[34] |
Cadaret CN, Posont RJ, Beede KA, et al. Maternal inflammation at midgestation impairs subsequent fetal myoblast function and skeletal muscle growth in rats, resulting in intrauterine growth restriction at term[J]. Transl Anim Sci, 2019, 3(2):txz037. doi: 10.1093/tas/txz037.
|
[35] |
Valentine JM, Li ME, Shoelson SE, et al. NFκB Regulates Muscle Development and Mitochondrial Function[J]. J Gerontol A Biol Sci Med Sci, 2020, 75(4):647-653. doi: 10.1093/gerona/gly262.
|
[36] |
Posont RJ, Cadaret CN, Beard JK, et al. Maternofetal inflammation induced for 2 wk in late gestation reduced birth weight and impaired neonatal growth and skeletal muscle glucose metabolism in lambs[J]. J Anim Sci, 2021, 99(5):skab102. doi: 10.1093/jas/skab102.
|
[37] |
Verma IM, Stevenson JK, Schwarz EM, et al. Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation[J]. Genes Dev, 1995, 9(22):2723-2735. doi: 10.1101/gad.9.22.2723.
|
[38] |
李伟, 赵金波. 肌肉调节因子基因家族与肌肉形成关系的研究进展[J]. 现代畜牧科技, 2021, 11:22-23. doi: 10.19369/j.cnki.2095-9737.2021.11.008.
|
[39] |
Steyn PJ, Dzobo K, Smith RI, et al. Interleukin-6 Induces Myogenic Differentiation via JAK2-STAT3 Signaling in Mouse C2C12 Myoblast Cell Line and Primary Human Myoblasts[J]. Int J Mol Sci, 2019, 20(21):5273. doi: 10.3390/ijms20215273.
|
[40] |
Kretschmer T, Schulze-Edinghausen M, Turnwald EM, et al. Effect of Maternal Obesity in Mice on IL-6 Levels and Placental Endothelial Cell Homeostasis[J]. Nutrients, 2020, 12(2):296. doi: 10.3390/nu12020296.
|
[41] |
Zhang J, Yan E, Zhang L, et al. Curcumin reduces oxidative stress and fat deposition in longissimus dorsi muscle of intrauterine growth-retarded finishing pigs[J]. Anim Sci J, 2022, 93(1):e13741. doi: 10.1111/asj.13741.
|
[42] |
He J, Niu Y, Wang F, et al. Dietary curcumin supplementation attenuates inflammation, hepatic injury and oxidative damage in a rat model of intra-uterine growth retardation[J]. Br J Nutr, 2018, 120(5):537-548. doi: 10.1017/S0007114518001630.
|
[43] |
郭长胜, 乌云塔娜, 王艳, 等. 胎儿宫内发育迟缓的危险因素及孕期运动对其干预作用的研究进展[J]. 中国儿童保健杂志, 2022, 30(10):1091-1094,1103. doi: 10.11852/zgetbjzz2021-1499.
|
[44] |
Pinto AP, Muñoz VR, da Rocha AL, et al. IL-6 deletion decreased REV-ERBα protein and influenced autophagy and mitochondrial markers in the skeletal muscle after acute exercise[J]. Front Immunol, 2022, 13:953272. doi: 10.3389/fimmu.2022.953272.
|