[1] |
Fogo AB, Kronbichler A, Bajema IM. AI′s Threat to the Medical Profession[J]. JAMA, 2024, 331(6):471-472. doi: 10.1001/jama.2024.0018.
|
[2] |
McCarthy J, Minsky M, Rochester N, et al. A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955[J]. AI Mag, 2006, 27(4):12-14. doi: 12.10.1609/aimag.v27i4.1904.
|
[3] |
Perez-Lopez R, Reis-Filho JS, Kather JN. A framework for artificial intelligence in cancer research and precision oncology[J]. NPJ Precis Oncol, 2023, 7(1):43. doi: 10.1038/s41698-023-00383-y.
pmid: 37198249
|
[4] |
Jiang Y, Wang C, Zhou S. Artificial intelligence-based risk stratification, accurate diagnosis and treatment prediction in gynecologic oncology[J]. Semin Cancer Biol, 2023, 96:82-99. doi: 10.1016/j.semcancer.2023.09.005.
pmid: 37783319
|
[5] |
Cao L, Yang J, Rong Z, et al. A novel attention-guided convolutional network for the detection of abnormal cervical cells in cervical cancer screening[J]. Med Image Anal, 2021, 73:102197. doi: 10.1016/j.media.2021.102197.
|
[6] |
Du H, Dai W, Zhou Q, et al. AI-assisted system improves the work efficiency of cytologists via excluding cytology-negative slides and accelerating the slide interpretation[J]. Front Oncol, 2023, 13:1290112. doi: 10.3389/fonc.2023.1290112.
|
[7] |
Zhao Y, Li Y, Xing L, et al. The Performance of Artificial Intelligence in Cervical Colposcopy: A Retrospective Data Analysis[J]. J Oncol, 2022, 2022:4370851. doi: 10.1155/2022/4370851.
|
[8] |
Liu Y, Song T, Dong TF, et al. MRI-based radiomics analysis to evaluate the clinicopathological characteristics of cervical carcinoma: a multicenter study[J]. Acta Radiol, 2023, 64(1):395-403. doi: 10.1177/02841851211065142.
|
[9] |
Liu D, Yang L, Du D, et al. Multi-Parameter MR Radiomics Based Model to Predict 5-Year Progression-Free Survival in Endometrial Cancer[J]. Front Oncol, 2022, 12:813069. doi: 10.3389/fonc.2022.813069.
|
[10] |
Hodneland E, Dybvik JA, Wagner-Larsen KS, et al. Automated segmentation of endometrial cancer on MR images using deep learning[J]. Sci Rep, 2021, 11(1):179. doi: 10.1038/s41598-020-80068-9.
pmid: 33420205
|
[11] |
Huang Z, Yang E, Shen J, et al. A pathologist-AI collaboration framework for enhancing diagnostic accuracies and efficiencies[J]. Nat Biomed Eng, 2024 Jun 19. doi: 10.1038/s41551-024-01223-5.
|
[12] |
Wei M, Zhang Y, Bai G, et al. T2-weighted MRI-based radiomics for discriminating between benign and borderline epithelial ovarian tumors: a multicenter study[J]. Insights Imaging, 2022, 13(1):130. doi: 10.1186/s13244-022-01264-x.
|
[13] |
Li J, Li X, Ma J, et al. Computed tomography-based radiomics machine learning classifiers to differentiate type Ⅰ and type Ⅱ epithelial ovarian cancers[J]. Eur Radiol, 2023, 33(7):5193-5204. doi: 10.1007/s00330-022-09318-w.
|
[14] |
Kim M, Chen C, Wang P, et al. Detection of ovarian cancer via the spectral fingerprinting of quantum-defect-modified carbon nanotubes in serum by machine learning[J]. Nat Biomed Eng, 2022, 6(3):267-275. doi: 10.1038/s41551-022-00860-y.
pmid: 35301449
|
[15] |
Kim HY, Cho GJ, Kwon HS. Applications of artificial intelligence in obstetrics[J]. Ultrasonography, 2023, 42(1):2-9. doi: 10.14366/usg.22063.
pmid: 36588179
|
[16] |
Munné S, Nakajima ST, Najmabadi S, et al. Corrigendum. First PGT-A using human in vivo blastocysts recovered by uterine lavage: comparison with matched IVF embryo controls[J]. Hum Reprod, 2021, 36(7):2069-2070. doi: 10.1093/humrep/deab097.
|
[17] |
Bormann CL, Curchoe CL, Thirumalaraju P, et al. Deep learning early warning system for embryo culture conditions and embryologist performance in the ART laboratory[J]. J Assist Reprod Genet, 2021, 38(7):1641-1646. doi: 10.1007/s10815-021-02198-x.
|
[18] |
Theilgaard Lassen J, Fly Kragh M, Rimestad J, et al. Development and validation of deep learning based embryo selection across multiple days of transfer[J]. Sci Rep, 2023, 13(1):4235. doi: 10.1038/s41598-023-31136-3.
pmid: 36918648
|
[19] |
Park M, Yoon H, Kang BH, et al. Deep Learning-Based Precision Analysis for Acrosome Reaction by Modification of Plasma Membrane in Boar Sperm[J]. Animals(Basel), 2023, 13(16):2622. doi: 10.3390/ani13162622.
|
[20] |
Punjani N, Kang C, Lee RK, et al. Technological Advancements in Male Infertility Microsurgery[J]. J Clin Med, 2021, 10(18):4259. doi: 10.3390/jcm10184259.
|
[21] |
Desai GS. Artificial Intelligence: The Future of Obstetrics and Gynecology[J]. J Obstet Gynaecol India, 2018, 68(4):326-327. doi: 10.1007/s13224-018-1118-4.
|
[22] |
马周, 易跃雄, 陈雨柔, 等. 基于深度学习YOLOv5网络的机器人辅助单孔腹腔镜子宫切除术实时解剖标志指示系统[J]. 武汉大学学报(医学版), 2024, 45(2):152-158. doi: 10.14188/j.1671-8852.2023.0112.
|
[23] |
党建红, 孙昊, 隋晓馨, 等. 人工智能辅助悬吊式无气腹单孔腹腔镜在妇科手术中的应用价值[J]. 机器人外科学杂志(中英文), 2024, 5(3):312-318. doi: 10.12180/j.issn.2096-7721.2024.03.002.
|
[24] |
项珍珍, 徐凌燕, 刘根红, 等. 人工智能云随访软件在妇科日间手术一体化管理中的应用[J]. 护理与康复, 2021, 20(5):83-85. doi: 10.3969/j.issn.1671-9875.2021.05.022.
|
[25] |
王景涛, 易跃雄, 陈雨柔, 等. 妇科VR/AR手术训练系统在妇科手术教学中的探索与实践[J]. 中国继续医学教育, 2022, 14(2):155-158. doi: 10.3969/j.issn.1674-9308.2022.02.041.
|
[26] |
栗嘉楠, 汪龙霞, 李秋洋. 人工智能技术在妇科超声教学中的应用[J]. 中国病案, 2024, 25(6):91-94. doi: 10.3969/j.issn.1672-2566.2024.06.031.
|
[27] |
Grünebaum A, Chervenak J, Pollet SL, et al. The exciting potential for ChatGPT in obstetrics and gynecology[J]. Am J Obstet Gynecol, 2023, 228(6):696-705. doi: 10.1016/j.ajog.2023.03.009.
pmid: 36924907
|
[28] |
Rodriguez F, Scheinker D, Harrington RA. Promise and Perils of Big Data and Artificial Intelligence in Clinical Medicine and Biomedical Research[J]. Circ Res, 2018, 123(12):1282-1284. doi: 10.1161/CIRCRESAHA.118.314119.
pmid: 30566055
|
[29] |
Günakan E, Atan S, Haberal AN, et al. A novel prediction method for lymph node involvement in endometrial cancer: machine learning[J]. Int J Gynecol Cancer, 2019, 29(2):320-324. doi: 10.1136/ijgc-2018-000033.
pmid: 30718313
|
[30] |
Troisi J, Raffone A, Travaglino A, et al. Development and Validation of a Serum Metabolomic Signature for Endometrial Cancer Screening in Postmenopausal Women[J]. JAMA Netw Open, 2020, 3(9):e2018327. doi: 10.1001/jamanetworkopen.2020.18327.
|
[31] |
Desbois M, Udyavar AR, Ryner L, et al. Integrated digital pathology and transcriptome analysis identifies molecular mediators of T-cell exclusion in ovarian cancer[J]. Nat Commun, 2020, 11(1):5583. doi: 10.1038/s41467-020-19408-2.
pmid: 33149148
|
[32] |
Jansi Rani M, Devaraj D. Two-Stage Hybrid Gene Selection Using Mutual Information and Genetic Algorithm for Cancer Data Classification[J]. J Med Syst, 2019, 43(8):235. doi: 10.1007/s10916-019-1372-8.
pmid: 31209677
|
[33] |
Hernandez AF, Lindsell CJ. The Future of Clinical Trials: Artificial to Augmented to Applied Intelligence[J]. JAMA, 2023, 330(21):2061-2063. doi: 10.1001/jama.2023.23822.
pmid: 37950740
|
[34] |
van der Laak J, Litjens G, Ciompi F. Deep learning in histopathology: the path to the clinic[J]. Nat Med, 2021, 27(5):775-784. doi: 10.1038/s41591-021-01343-4.
pmid: 33990804
|
[35] |
Dossantos J, An J, Javan R. Eyes on AI: ChatGPT′s Transformative Potential Impact on Ophthalmology[J]. Cureus, 2023, 15(6):e40765. doi: 10.7759/cureus.40765.
|
[36] |
Giannakakis A, Sandaltzopoulos R, Greshock J, et al. miR-210 links hypoxia with cell cycle regulation and is deleted in human epithelial ovarian cancer[J]. Cancer Biol Ther, 2008, 7(2):255-264. doi: 10.4161/cbt.7.2.5297.
pmid: 18059191
|
[37] |
Resnicow K, Catley D, Goggin K, et al. Shared Decision Making in Health Care: Theoretical Perspectives for Why It Works and For Whom[J]. Med Decis Making, 2022, 42(6):755-764. doi: 10.1177/0272989X211058068.
|