国际妇产科学杂志 ›› 2025, Vol. 52 ›› Issue (1): 8-12.doi: 10.12280/gjfckx.20240820
收稿日期:
2024-09-07
出版日期:
2025-02-15
发布日期:
2025-02-14
通讯作者:
刘建荣,E-mail:liujianrong3@sina.com
作者简介:
△审校者
ZHANG Ye, CHEN Qiao-yun, ZHAO Jia-yi, CHEN Lu, LIU Jian-rong()
Received:
2024-09-07
Published:
2025-02-15
Online:
2025-02-14
Contact:
LIU Jian-rong, E-mail: liujianrong3@sina.com
摘要:
宫颈癌作为一种常见的妇科恶性肿瘤,其发病率呈逐年上升趋势。传统的治疗方式如放疗、化疗和手术等仍存在严重的局限性。纳米医学的进步为宫颈癌的治疗带来了新的可能性,尤其是纳米技术的应用成为了研究的热点。纳米微球(nanoparticles,NPs)以其卓越的比表面积和高药物载荷能力以及多样化的材质选择和良好的生物相容性,成为了一种高效的纳米载体系统。NPs不仅能够承载多种治疗药物,还能通过精确控制药物释放的位置和时间,实现高剂量集中给药或长期缓释,从而提高药物疗效并减少不良反应。这些优势使得NPs在提升药物疗效方面显示出巨大的潜力,并在新的治疗策略中发挥关键作用。近年来,研究者们利用NPs构建了针对宫颈癌细胞的靶向输送系统,为宫颈癌的诊断和治疗带来了新的希望。
张野, 陈巧云, 赵佳怡, 陈璐, 刘建荣. 纳米微球在宫颈癌预防与治疗中的应用进展[J]. 国际妇产科学杂志, 2025, 52(1): 8-12.
ZHANG Ye, CHEN Qiao-yun, ZHAO Jia-yi, CHEN Lu, LIU Jian-rong. Progress in the Application of Nanoparticles in the Prevention and Treatment of Cervical Cancer[J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 8-12.
[1] | Inoue S, Ito H, Hosono S, et al. Net Survival of Elderly Patients with Gynecological Cancer Aged Over 75 Years in 2006-2008[J]. Asian Pac J Cancer Prev, 2019, 20(2):437-442. doi: 10.31557/APJCP.2019. 20.2.437. |
[2] |
Matsuo K, Shimada M, Yamaguchi S, et al. Association of Radical Hysterectomy Surgical Volume and Survival for Early-Stage Cervical Cancer[J]. Obstet Gynecol, 2019, 133(6):1086-1098. doi: 10.1097/AOG.0000000000003280.
pmid: 31135722 |
[3] | Li K, Wei J, Yu H, et al. A Generic Method for Preparing Hollow Mesoporous Silica Catalytic Nanoreactors with Metal Oxide Nanoparticles inside Their Cavities[J]. Angew Chem Int Ed Engl, 2018, 57(50):16458-16463. doi: 10.1002/anie.201810777. |
[4] | Yang Y, Zhang N, Jiang W. unctional DNA-Zn(2+) coordination nanospheres for sensitive imaging of 8-oxyguanine DNA glycosylase activity in living cells[J]. Talanta, 2024,280:126779. doi: 10.1016/j.talanta.2024.126779. |
[5] | Cui L, Perini G, Palmieri V, et al. Plant-Derived Extracellular Vesicles as a Novel Frontier in Cancer Therapeutics[J]. Nanomaterials (Basel), 2024, 14(16):1331. doi: 10.3390/nano14161331. |
[6] | Abas BI, Demirbolat GM, Cevik O. Wharton jelly-derived mesenchymal stem cell exosomes induce apoptosis and suppress EMT signaling in cervical cancer cells as an effective drug carrier system of paclitaxel[J]. PLoS One, 2022, 17(9):e0274607. doi: 10.1371/journal.pone.0274607. |
[7] |
Zhao B, Lin H, Jiang X, et al. Exosome-like nanoparticles derived from fruits, vegetables, and herbs: innovative strategies of therapeutic and drug delivery[J]. Theranostics, 2024, 14(12):4598-4621. doi: 10.7150/thno.97096.
pmid: 39239509 |
[8] |
Adeyemi SA, Az-Zamakhshariy Z, Choonara YE. In Vitro Prototyping of a Nano-Organogel for Thermo-Sonic Intra-Cervical Delivery of 5-Fluorouracil-Loaded Solid Lipid Nanoparticles for Cervical Cancer[J]. AAPS PharmSciTech, 2023, 24(5):123. doi: 10.1208/s12249-023-02583-y.
pmid: 37226039 |
[9] | Almomen A, Badran M, Alhowyan AA, et al. Imiquimod-Loaded Chitosan-Decorated Di-Block and Tri-Block Polymeric Nanoparticles Loaded In Situ Gel for the Management of Cervical Cancer[J]. Gels, 2023, 9(9):713. doi: 10.3390/gels9090713. |
[10] | Curro II, Teasdale CA, Wyatt LC, et al. Cancer Screening, Knowledge, and Fatalism among Chinese, Korean, and South Asian Residents of New York City[J]. Cancer Epidemiol Biomarkers Prev, 2024, 33(11):1475-1483. doi: 10.1158/1055-9965.EPI-24-0399. |
[11] | Liu S, Xu T, Chen X, et al. TP53AIP1 induce autophagy via the AKT/mTOR signaling pathway in the breast cancer cells[J]. Cancer Biol Ther, 2024, 25(1):2398297. doi: 10.1080/15384047.2024.2398297. |
[12] | Jacquin E, Saunier M, Lepiller Q, et al. The level of expression of HPV16 early transcripts is not associated with the natural history of cervical lesions[J]. J Med Virol, 2024, 96(9):e29875. doi: 10.1002/jmv.29875. |
[13] | Luo Y, Niu M, Liu Y, et al. Oncoproteins E6 and E7 upregulate topoisomerase I to activate the cGAS-PD-L1 pathway in cervical cancer development[J]. Front Pharmacol, 2024,15:1450875. doi: 10.3389/fphar.2024.1450875. |
[14] | Neupane KR, Aryal SP, Harvey BT, et al. Organelle Specific Macrophage Engineered Vesicles Differentially Reprogram Macrophage Polarization[J]. Adv Healthc Mater, 2024, 13(30):e2401906. doi: 10.1002/adhm.202401906. |
[15] |
Yin P, Sun D, Deng Y, et al. Metal-organic cage as a theranostic nanoplatform for magnetic resonance imaging guided chemodynamic therapy[J]. Theranostics, 2024, 14(12):4861-4873. doi: 10.7150/thno.97264.
pmid: 39239515 |
[16] | Dover L, Dulaney C. PROshot: Immunotherapy for Cervical Cancer, Epidermal Growth Factor Receptor-Mutated Stage Ⅲ Lung Cancer, Perioperative Chemotherapy for Esophageal Cancer, Salvage Postprostatectomy Radiation and Androgen Deprivation Therapy, and Immunotherapy for Head and Neck Cancer[J]. Pract Radiat Oncol, 2024, 14(5):363-367. doi: 10.1016/j.prro.2024.06.001. |
[17] | Gao H, Wu H, Zhang Y, et al. Long-term survival in patients with para-aortic metastatic cervical cancer receiving simultaneous integrated boost chemoradiation to positive lymph nodes: a single-center experience[J]. Int J Gynecol Cancer, 2024, 34(10):1536-1546. doi: 10.1136/ijgc-2024-005664. |
[18] |
Tao H, Chen Z, Yao B, et al. Galaxamide alleviates cisplatin-induced premature ovarian insufficiency via the PI3K signaling pathway in HeLa tumor-bearing mice[J]. BMC Cancer, 2024, 24(1):1060. doi: 10.1186/s12885-024-12848-9.
pmid: 39192214 |
[19] | Yadav N, Tripathi AK, Parveen A, et al. PLGA-Quercetin Nano-Formulation Inhibits Cancer Progression via Mitochondrial Dependent Caspase-3,7 and Independent FoxO1 Activation with Concomitant PI3K/AKT Suppression[J]. Pharmaceutics, 2022, 14(7):1326. doi: 10.3390/pharmaceutics14071326. |
[20] |
Wang Y, Shen N, Li S, et al. Synergistic Therapy for Cervical Cancer by Codelivery of Cisplatin and JQ1 Inhibiting Plk1-Mutant Trp53 Axis[J]. Nano Lett, 2021, 21(6):2412-2421. doi: 10.1021/acs.nanolett.0c04402.
pmid: 33705152 |
[21] | Rehman S, Alahmari F, Aldossary L, et al. Nano-sized warriors: zinc chromium vanadate nanoparticles as a dual solution for eradicating waterborne enterobacteriaceae and fighting cancer[J]. Front Pharmacol, 2023,14:1213824. doi: 10.3389/fphar.2023.1213824. |
[22] | Shao S, A Ortega-Rivera O, Ray S, et al. A Scalable Manufacturing Approach to Single Dose Vaccination against HPV[J]. Vaccines (Basel), 2021, 9(1):66. doi: 10.3390/vaccines9010066. |
[23] | Kim Y, Kang E. A graphitic nano-onion/molybdenum disulfide nanosheet composite as a platform for HPV-associated cancer-detecting DNA biosensors[J]. J Nanobiotechnology, 2023, 21(1):187. doi: 10.1186/s12951-023-01948-6. |
[24] | Rawat R, Roy S, Goswami T, et al. An Electroanalytical Flexible Biosensor Based on Reduced Graphene Oxide-DNA Hybrids for the Early Detection of Human Papillomavirus-16[J]. Diagnostics (Basel), 2022, 12(9):2087. doi: 10.3390/diagnostics12092087. |
[25] | Pareek S, Jain U, Bharadwaj M, et al. An ultrasensitive electrochemical DNA biosensor for monitoring Human papillomavirus-16 (HPV-16) using graphene oxide/Ag/Au nano-biohybrids[J]. Anal Biochem, 2023,663:115015. doi: 10.1016/j.ab.2022.115015. |
[26] | Appidi T, Vakada M, Buddhiraju HS, et al. Development of a Point-of-Care Cervico-Vaginal Sampling/Testing Device for the Colorimetric Detection of Cervical Cancer[J]. Diagnostics (Basel), 2023, 13(8):1382. doi: 10.3390/diagnostics13081382. |
[27] |
Jin J, Liu Z, Chen Y. Effect of Nano-Tracer on Identification of Sentinel Lymph Nodes in Pelvic Cavity and Postoperative Complications in Patients with Cervical Cancer[J]. J Nanosci Nanotechnol, 2021, 21(2):971-976. doi: 10.1166/jnn.2021.18706.
pmid: 33183432 |
[28] |
Liu L, Lei H, Hou G, et al. Gas-Amplified Metalloimmunotherapy with Dual Activation of Pyroptosis and the STING Pathway for Remodeling the Immunosuppressive Cervical Cancer Microenvironment[J]. ACS Nano, 2024, 18(20):12830-12844. doi: 10.1021/acsnano.4c00017.
pmid: 38709246 |
[29] | Mohapatra A, Rajendrakumar SK, Cherukula K, et al. A sugar modified amphiphilic cationic nano-adjuvant ceased tumor immune suppression and rejuvenated peptide vaccine induced antitumor immunity in cervical cancer[J]. Biomater Sci, 2023, 11(5):1853-1866. doi: 10.1039/d2bm01715f. |
[30] |
Qi L, Pan T, Ou L, et al. Biocompatible nucleus-targeted graphene quantum dots for selective killing of cancer cells via DNA damage[J]. Commun Biol, 2021, 4(1):214. doi: 10.1038/s42003-021-01713-1.
pmid: 33594275 |
[31] |
Fathy MM, Elfiky AA, Bashandy YS, et al. An insight into synthesis and antitumor activity of citrate and gallate stabilizing gold nanospheres[J]. Sci Rep, 2023, 13(1):2749. doi: 10.1038/s41598-023-29821-4.
pmid: 36797452 |
[32] | Karthikeyan C, Varaprasad K, Venugopal SK, et al. Biocidal (bacterial and cancer cells) activities of chitosan/CuO nanomaterial, synthesized via a green process[J]. Carbohydr Polym, 2021,259:117762. doi: 10.1016/j.carbpol.2021.117762. |
[33] | Fu Y, Zhang Y, Zhang Y, et al. Nanoreactors with Cascade Catalytic Activity Reprogram the Tumor Microenvironment for Enhanced Immunotherapy by Synchronously Regulating Treg and Macrophage Cells[J]. ACS Appl Mater Interfaces, 2024, 16(37):49053-49068. doi: 10.1021/acsami.4c09830. |
[34] | Wu L, Tan Y, Zhang H, et al. A laser free self-luminous nanosystem for photodynamic therapy of cervical cancer cells[J]. Photodiagnosis Photodyn Ther, 2023,44:103756. doi: 10.1016/j.pdpdt.2023.103756. |
[35] | Garg P, Ramisetty SK, Raghu Subbalakshmi A, et al. Gynecological cancer tumor Microenvironment: Unveiling cellular complexity and therapeutic potential[J]. Biochem Pharmacol, 2024,229:116498. doi: 10.1016/j.bcp.2024.116498. |
[36] | Li M, Wang Y, Zhang L, et al. Cancer Cell Membrane-Enveloped Dexamethasone Normalizes the Tumor Microenvironment and Enhances Gynecologic Cancer Chemotherapy[J]. ACS Nano, 2023, 17(17):16703-16714. doi: 10.1021/acsnano.3c03013. |
[37] | Kumari S, Nehra A, Gupta K, et al. Chlorambucil-Loaded Graphene-Oxide-Based Nano-Vesicles for Cancer Therapy[J]. Pharmaceutics, 2023, 15(2):649. doi: 10.3390/pharmaceutics15020649. |
[38] | Kalogera E, Nevala WK, Finnes HD, et al. A Phase I Trial of Nab-Paclitaxel/Bevacizumab (AB160) Nano-Immunoconjugate Therapy for Gynecologic Malignancies[J]. Clin Cancer Res, 2024, 30(12):2623-2635. doi: 10.1158/1078-0432.CCR-23-3196. |
[39] | Jagaran K, Singh M. Copolymer-Green-Synthesized Copper Oxide Nanoparticles Enhance Folate-Targeting in Cervical Cancer Cells In Vitro[J]. Polymers (Basel), 2023, 15(10):2393. doi: 10.3390/polym 15102393. |
[40] | Venkatas J, Singh M. Curcumin-reduced gold nanoparticles facilitate IL-12 delivery to a cervical cancer in vitro cell model[J]. Nanomedicine (Lond), 2023, 18(13):945-960. doi: 10.2217/nnm-2023-0076. |
[41] | Shariare MH, Khan MA, Al-Masum A, et al. Development of Stable Liposomal Drug Delivery System of Thymoquinone and Its In Vitro Anticancer Studies Using Breast Cancer and Cervical Cancer Cell Lines[J]. Molecules, 2022, 27(19):6744. doi: 10.3390/molecules27196744. |
[42] | Sundara Rajan RS, Thomas J, Francis D, et al. Effective gene delivery using size dependant nano core-shell in human cervical cancer cell lines by magnetofection[J]. PLoS One, 2023, 18(9):e0289731. doi: 10.1371/journal.pone.0289731. |
[1] | 陈晓娟, 张艳馨. 妊娠合并血友病A患者足月分娩一例[J]. 国际妇产科学杂志, 2025, 52(2): 158-160. |
[2] | 张昊晟, 魏芳. Nectin-4在妇科恶性肿瘤中的研究进展[J]. 国际妇产科学杂志, 2025, 52(2): 165-168. |
[3] | 郭竞, 张茂祥, 周春鹤, 刘思宁, 李惠艳. 孟德尔随机化在暴露因素与宫颈癌因果关系中的研究进展[J]. 国际妇产科学杂志, 2025, 52(2): 169-174. |
[4] | 柴玲娜, 李艳丽, 石洁, 高晗, 欧阳夕颜, 程诗语. 吲哚菁绿示踪前哨淋巴结在早期宫颈癌中的应用[J]. 国际妇产科学杂志, 2025, 52(2): 175-179. |
[5] | 林环宇, 邵小光, 路旭宏, 王秋月, 魏巍, 佟春艳. Web of Science核心数据库2004—2024年女性恶性肿瘤患者生育力保存的研究现状及热点[J]. 国际妇产科学杂志, 2025, 52(2): 180-186. |
[6] | 陈淑婉, 邓高丕, 袁烁. 子宫伴奇异形核平滑肌瘤一例[J]. 国际妇产科学杂志, 2025, 52(2): 187-190. |
[7] | 江爱美, 张信美. 腹壁子宫内膜异位症的治疗进展[J]. 国际妇产科学杂志, 2025, 52(2): 211-216. |
[8] | 白耀俊, 王思瑶, 令菲菲, 张森淮, 李红丽, 刘畅. Trop-2及靶向Trop-2抗体偶联药物在妇科恶性肿瘤中的应用进展[J]. 国际妇产科学杂志, 2025, 52(1): 1-7. |
[9] | 侯春艳, 杜秀萍. 妊娠中晚期自发性子宫破裂二例[J]. 国际妇产科学杂志, 2025, 52(1): 110-113. |
[10] | 钟佩蕖, 招丽坚, 邹欣欣. 残角子宫妊娠行期待治疗至妊娠晚期一例[J]. 国际妇产科学杂志, 2025, 52(1): 114-116. |
[11] | 胡明珠, 刘丽文, 黄蕾. HIV感染女性的阴道微生态变化与宫颈癌的相关研究[J]. 国际妇产科学杂志, 2025, 52(1): 13-18. |
[12] | 潘琪, 冯同富, 金晶, 吴莺, 杜欣. 腹腔镜切除成人腹膜后巨大成熟性畸胎瘤一例[J]. 国际妇产科学杂志, 2025, 52(1): 28-31. |
[13] | 贾炎峰, 吴珍珍, 王维红, 王玥元, 李娟. 原发性卵巢腺鳞癌一例[J]. 国际妇产科学杂志, 2025, 52(1): 32-36. |
[14] | 宋丽芳, 吴珍珍, 毛宝宏, 赵小丽, 刘青. 卵巢癌腹股沟淋巴结孤立转移一例[J]. 国际妇产科学杂志, 2025, 52(1): 37-41. |
[15] | 石百超, 王宇, 常惠, 卢凤娟, 关木馨, 余健楠, 吴效科. 中药及天然产物改善子宫内膜异位症的作用机制[J]. 国际妇产科学杂志, 2025, 52(1): 66-71. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||