国际妇产科学杂志 ›› 2022, Vol. 49 ›› Issue (3): 241-245.doi: 10.12280/gjfckx.20211119
• 普通妇科疾病及相关研究:综述 • 下一篇
收稿日期:
2021-12-07
出版日期:
2022-06-15
发布日期:
2022-06-23
通讯作者:
刘恒炜
E-mail:hw.liu@whu.edu.cn
基金资助:
Received:
2021-12-07
Published:
2022-06-15
Online:
2022-06-23
Contact:
LIU Heng-wei
E-mail:hw.liu@whu.edu.cn
摘要:
子宫内膜异位症(endometriosis,EMs)是一种多发于育龄期女性的妇科良性疾病,具有难治性和复杂性的特点,其发病机制尚未阐明。自噬(autophagy)是指生物膜将胞质内受损细胞器和错误折叠蛋白质包裹并转运至溶酶体内降解,并得以循环利用的动态调控过程。近年来,越来越多的研究发现自噬在EMs发生、发展、诊断及治疗中扮演重要角色。自噬在EMs中的表达水平存在上调或下调2种状态,提示自噬在EMs的发生、发展中发挥着促进或抑制的“双刃剑”作用,但目前仍有许多关键问题尚未解决。综述了自噬在EMs发生、发展和治疗中的作用及相关机制。
刘可伊, 刘恒炜. 自噬在子宫内膜异位症中的作用及机制[J]. 国际妇产科学杂志, 2022, 49(3): 241-245.
LIU Ke-yi, LIU Heng-wei. The Role and Mechanism of Autophagy in Endometriosis[J]. Journal of International Obstetrics and Gynecology, 2022, 49(3): 241-245.
[1] |
Wang Y, Nicholes K, Shih IM. The Origin and Pathogenesis of Endometriosis[J]. Annu Rev Pathol, 2020, 15:71-95. doi: 10.1146/annurev-pathmechdis-012419-032654.
doi: 10.1146/annurev-pathmechdis-012419-032654 pmid: 31479615 |
[2] |
Sullivan-Myers C, Sherman KA, Beath AP, et al. Delineating sociodemographic, medical and quality of life factors associated with psychological distress in individuals with endometriosis[J]. Hum Reprod, 2021, 36(8):2170-2180. doi: 10.1093/humrep/deab138.
doi: 10.1093/humrep/deab138 |
[3] |
El Hout M, Cosialls E, Mehrpour M, et al. Crosstalk between autophagy and metabolic regulation of cancer stem cells[J]. Mol Cancer, 2020, 19(1):27. doi: 10.1186/s12943-019-1126-8.
doi: 10.1186/s12943-019-1126-8 |
[4] |
Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms[J]. J Pathol, 2010, 221(1):3-12. doi: 10.1002/path.2697.
doi: 10.1002/path.2697 |
[5] |
Li WW, Li J, Bao JK. Microautophagy: lesser-known self-eating[J]. Cell Mol Life Sci, 2012, 69(7):1125-1136. doi: 10.1007/s00018-011-0865-5.
doi: 10.1007/s00018-011-0865-5 |
[6] |
Li X, He S, Ma B. Autophagy and autophagy-related proteins in cancer[J]. Mol Cancer, 2020, 19(1):12. doi: 10.1186/s12943-020-1138-4.
doi: 10.1186/s12943-020-1138-4 |
[7] |
Yang H, Jiang X, Li B, et al. Mechanisms of mTORC1 activation by RHEB and inhibition by PRAS40[J]. Nature, 2017, 552(7685):368-373. doi: 10.1038/nature25023.
doi: 10.1038/nature25023 |
[8] |
Takahara T, Amemiya Y, Sugiyama R, et al. Amino acid-dependent control of mTORC1 signaling: a variety of regulatory modes[J]. J Biomed Sci, 2020, 27(1):87. doi: 10.1186/s12929-020-00679-2.
doi: 10.1186/s12929-020-00679-2 |
[9] |
Kotani T, Kirisako H, Koizumi M, et al. The Atg2-Atg18 complex tethers pre-autophagosomal membranes to the endoplasmic reticulum for autophagosome formation[J]. Proc Natl Acad Sci U S A, 2018, 115(41):10363-10368. doi: 10.1073/pnas.1806727115.
doi: 10.1073/pnas.1806727115 |
[10] |
Li F, Alderman MH 3rd, Tal A, et al. Hematogenous Dissemination of Mesenchymal Stem Cells from Endometriosis[J]. Stem Cells, 2018, 36(6):881-890. doi: 10.1002/stem.2804.
doi: 10.1002/stem.2804 |
[11] |
Chen PS, Chiu WT, Hsu PL, et al. Pathophysiological implications of hypoxia in human diseases[J]. J Biomed Sci, 2020, 27(1):63. doi: 10.1186/s12929-020-00658-7.
doi: 10.1186/s12929-020-00658-7 |
[12] |
Liu H, Du Y, Zhang Z, et al. Autophagy contributes to hypoxia-induced epithelial to mesenchymal transition of endometrial epithelial cells in endometriosis[J]. Biol Reprod, 2018, 99(5):968-981. doi: 10.1093/biolre/ioy128.
doi: 10.1093/biolre/ioy128 |
[13] |
Liu H, Zhang Z, Xiong W, et al. Long non-coding RNA MALAT1 mediates hypoxia-induced pro-survival autophagy of endometrial stromal cells in endometriosis[J]. J Cell Mol Med, 2019, 23(1):439-452. doi: 10.1111/jcmm.13947.
doi: 10.1111/jcmm.13947 |
[14] | Xu TX, Zhao SZ, Dong M, et al. Hypoxia responsive miR-210 promotes cell survival and autophagy of endometriotic cells in hypoxia[J]. Eur Rev Med Pharmacol Sci, 2016, 20(3):399-406. |
[15] |
Allavena G, Carrarelli P, Del Bello B, et al. Autophagy is upregulated in ovarian endometriosis: a possible interplay with p53 and heme oxygenase-1[J]. Fertil Steril, 2015, 103(5):1244-1251.e1. doi: 10.1016/j.fertnstert.2015.02.007.
doi: 10.1016/j.fertnstert.2015.02.007 pmid: 25772769 |
[16] |
Huang J, Chen X, Lv Y. HMGB1 Mediated Inflammation and Autophagy Contribute to Endometriosis[J]. Front Endocrinol (Lausanne), 2021, 12:616696. doi: 10.3389/fendo.2021.616696.
doi: 10.3389/fendo.2021.616696 |
[17] |
Ma L, Li Z, Li W, et al. MicroRNA-142-3p suppresses endometriosis by regulating KLF9-mediated autophagy in vitro and in vivo[J]. RNA Biol, 2019, 16(12):1733-1748. doi: 10.1080/15476286.2019.1657352.
doi: 10.1080/15476286.2019.1657352 |
[18] |
Yang H, Hu T, Hu P, et al. miR-143-3p inhibits endometriotic stromal cell proliferation and invasion by inactivating autophagy in endometriosis[J]. Mol Med Rep, 2021, 23(5):356. doi: 10.3892/mmr.2021.11995.
doi: 10.3892/mmr.2021.11995 |
[19] |
Zhou Y, Peng Y, Xia Q, et al. Decreased Indian hedgehog signaling activates autophagy in endometriosis and adenomyosis[J]. Reproduction, 2021, 161(2):99-109. doi: 10.1530/REP-20-0172.
doi: 10.1530/REP-20-0172 |
[20] |
Li Y, Wang X, Wang X, et al. PDCD4 suppresses proliferation, migration, and invasion of endometrial cells by inhibiting autophagy and NF-κB/MMP2/MMP9 signal pathway[J]. Biol Reprod, 2018, 99(2):360-372. doi: 10.1093/biolre/ioy052.
doi: 10.1093/biolre/ioy052 |
[21] |
李艳辉, 耿育红, 刘琳, 等. 脂氧素A4下调自噬活性对子宫内膜间质细胞侵袭和迁移的影响及其作用机制[J]. 中华妇产科杂志, 2018, 53(8):547-553. doi: 10.3760/cma.j.issn.0529-567x.2018.08. 007.
doi: 10.3760/cma.j.issn.0529-567x.2018.08.007 |
[22] |
Patel BG, Rudnicki M, Yu J, et al. Progesterone resistance in endometriosis: origins, consequences and interventions[J]. Acta Obstet Gynecol Scand, 2017, 96(6):623-632. doi: 10.1111/aogs.13156.
doi: 10.1111/aogs.13156 |
[23] |
Mei J, Zhu XY, Jin LP, et al. Estrogen promotes the survival of human secretory phase endometrial stromal cells via CXCL12/CXCR4 up-regulation-mediated autophagy inhibition[J]. Hum Reprod, 2015, 30(7):1677-1689. doi: 10.1093/humrep/dev100.
doi: 10.1093/humrep/dev100 |
[24] |
Mei J, Zhou WJ, Zhu XY, et al. Suppression of autophagy and HCK signaling promotes PTGS2(high) FCGR3(-) NK cell differentiation triggered by ectopic endometrial stromal cells[J]. Autophagy, 2018, 14(8):1376-1397. doi: 10.1080/15548627.2018.1476809.
doi: 10.1080/15548627.2018.1476809 |
[25] |
Zhang B, Zhou WJ, Gu CJ, et al. The ginsenoside PPD exerts anti-endometriosis effects by suppressing estrogen receptor-mediated inhibition of endometrial stromal cell autophagy and NK cell cytotoxicity[J]. Cell Death Dis, 2018, 9(5):574. doi: 10.1038/s41419-018-0581-2.
doi: 10.1038/s41419-018-0581-2 pmid: 29760378 |
[26] |
Bi J, Wang D, Cui L, et al. RNA sequencing-based long non-coding RNA analysis and immunoassay in ovarian endometriosis[J]. Am J Reprod Immunol, 2021, 85(3):e13359. doi: 10.1111/aji.13359.
doi: 10.1111/aji.13359 |
[27] |
Jiang L, Wan Y, Feng Z, et al. Long Noncoding RNA UCA1 Is Related to Autophagy and Apoptosis in Endometrial Stromal Cells[J]. Front Oncol, 2020, 10:618472. doi: 10.3389/fonc.2020.618472.
doi: 10.3389/fonc.2020.618472 |
[28] |
Choi J, Jo M, Lee E, et al. Differential induction of autophagy by mTOR is associated with abnormal apoptosis in ovarian endometriotic cysts[J]. Mol Hum Reprod, 2014, 20(4):309-317. doi: 10.1093/molehr/gat091.
doi: 10.1093/molehr/gat091 |
[29] |
Luo X, Cheng W, Wang S, et al. Autophagy Suppresses Invasiveness of Endometrial Cells through Reduction of Fascin-1[J]. Biomed Res Int, 2018, 2018:8615435. doi: 10.1155/2018/8615435.
doi: 10.1155/2018/8615435 |
[30] |
Matsuzaki S, Pouly JL, Canis M. In vitro and in vivo effects of MK2206 and chloroquine combination therapy on endometriosis: autophagy may be required for regrowth of endometriosis[J]. Br J Pharmacol,2018, 175(10):1637-1653. doi: 10.1111/bph.14170.
doi: 10.1111/bph.14170 |
[31] |
Ruiz A, Rockfield S, Taran N, et al. Effect of hydroxychloroquine and characterization of autophagy in a mouse model of endometriosis[J]. Cell Death Dis, 2016, 7(1):e2059. doi: 10.1038/cddis.2015.361.
doi: 10.1038/cddis.2015.361 |
[32] |
Choi J, Jo M, Lee E, et al. Dienogest enhances autophagy induction in endometriotic cells by impairing activation of AKT,ERK1/2,and mTOR[J]. Fertil Steril, 2015, 104(3):655-664.e651.
doi: 10.1016/j.fertnstert.2015.05.020 |
[1] | 陈晓娟, 张艳馨. 妊娠合并血友病A患者足月分娩一例[J]. 国际妇产科学杂志, 2025, 52(2): 158-160. |
[2] | 张昊晟, 魏芳. Nectin-4在妇科恶性肿瘤中的研究进展[J]. 国际妇产科学杂志, 2025, 52(2): 165-168. |
[3] | 林环宇, 邵小光, 路旭宏, 王秋月, 魏巍, 佟春艳. Web of Science核心数据库2004—2024年女性恶性肿瘤患者生育力保存的研究现状及热点[J]. 国际妇产科学杂志, 2025, 52(2): 180-186. |
[4] | 曹秀蓉, 周文柏, 范香, 王逸斐, 朱鹏峰. 单细胞RNA测序解析子宫内膜异位症血管生成机制[J]. 国际妇产科学杂志, 2025, 52(2): 199-205. |
[5] | 殷婷, 丛慧芳. 子宫内膜异位症与痛觉敏化的免疫学研究进展[J]. 国际妇产科学杂志, 2025, 52(2): 206-210. |
[6] | 江爱美, 张信美. 腹壁子宫内膜异位症的治疗进展[J]. 国际妇产科学杂志, 2025, 52(2): 211-216. |
[7] | 白耀俊, 王思瑶, 令菲菲, 张森淮, 李红丽, 刘畅. Trop-2及靶向Trop-2抗体偶联药物在妇科恶性肿瘤中的应用进展[J]. 国际妇产科学杂志, 2025, 52(1): 1-7. |
[8] | 侯春艳, 杜秀萍. 妊娠中晚期自发性子宫破裂二例[J]. 国际妇产科学杂志, 2025, 52(1): 110-113. |
[9] | 钟佩蕖, 招丽坚, 邹欣欣. 残角子宫妊娠行期待治疗至妊娠晚期一例[J]. 国际妇产科学杂志, 2025, 52(1): 114-116. |
[10] | 张云凤, 张宛玥, 卢悦, 王阳阳, 井佳雨, 牟婧祎, 王悦. ARID1A与PIK3CA突变在卵巢子宫内膜异位症恶变中的研究进展[J]. 国际妇产科学杂志, 2025, 52(1): 19-22. |
[11] | 潘琪, 冯同富, 金晶, 吴莺, 杜欣. 腹腔镜切除成人腹膜后巨大成熟性畸胎瘤一例[J]. 国际妇产科学杂志, 2025, 52(1): 28-31. |
[12] | 贾炎峰, 吴珍珍, 王维红, 王玥元, 李娟. 原发性卵巢腺鳞癌一例[J]. 国际妇产科学杂志, 2025, 52(1): 32-36. |
[13] | 宋丽芳, 吴珍珍, 毛宝宏, 赵小丽, 刘青. 卵巢癌腹股沟淋巴结孤立转移一例[J]. 国际妇产科学杂志, 2025, 52(1): 37-41. |
[14] | 石百超, 王宇, 常惠, 卢凤娟, 关木馨, 余健楠, 吴效科. 中药及天然产物改善子宫内膜异位症的作用机制[J]. 国际妇产科学杂志, 2025, 52(1): 66-71. |
[15] | 李恒兵, 袁海宁, 张云洁, 张江琳, 郭子珍, 孙振高. 外泌体通过调控免疫微环境治疗慢性子宫内膜炎的研究进展[J]. 国际妇产科学杂志, 2025, 52(1): 72-78. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||