[1] |
Quinville BM, Deschenes NM, Ryckman AE, et al. A Comprehensive Review: Sphingolipid Metabolism and Implications of Disruption in Sphingolipid Homeostasis[J]. Int J Mol Sci, 2021, 22(11):5793. doi: 10.3390/ijms22115793.
|
[2] |
Zhang S, Zhu N, Li HF, et al. The lipid rafts in cancer stem cell: a target to eradicate cancer[J]. Stem Cell Res Ther, 2022, 13(1):432. doi: 10.1186/s13287-022-03111-8.
pmid: 36042526
|
[3] |
Li B, Qin Y, Yu X, et al. Lipid raft involvement in signal transduction in cancer cell survival, cell death and metastasis[J]. Cell Prolif, 2022, 55(1):e13167. doi: 10.1111/cpr.13167.
|
[4] |
Tallima H, Azzazy H, El Ridi R. Cell surface sphingomyelin: key role in cancer initiation, progression, and immune evasion[J]. Lipids Health Dis, 2021, 20(1):150. doi: 10.1186/s12944-021-01581-y.
pmid: 34717628
|
[5] |
Lee TY, Lu WJ, Changou CA, et al. Platelet autophagic machinery involved in thrombosis through a novel linkage of AMPK-MTOR to sphingolipid metabolism[J]. Autophagy, 2021, 17(12):4141-4158. doi: 10.1080/15548627.2021.1904495.
|
[6] |
Camacho L, Ouro A, Gomez-Larrauri A, et al. Implication of Ceramide Kinase/C1P in Cancer Development and Progression[J]. Cancers(Basel), 2022, 14(1):227. doi: 10.3390/cancers14010227.
|
[7] |
尹博, 丁鉴夷, 杨美琴, 等. 宫颈癌的相关免疫治疗及进展[J]. 国际妇产科学杂志, 2021, 48(6):628-633. doi: 10.12280/gjfckx.20210116.
|
[8] |
Neves A, Morais C, Mendes T, et al. Mass spectrometry and multivariate analysis to classify cervical intraepithelial neoplasia from blood plasma: an untargeted lipidomic study[J]. Sci Rep, 2018, 8(1):3954. doi: 10.1038/s41598-018-22317-6.
pmid: 29500376
|
[9] |
Porcari AM, Negrão F, Tripodi GL, et al. Molecular Signatures of High-Grade Cervical Lesions[J]. Front Oncol, 2018, 8:99. doi: 10.3389/fonc.2018.00099.
pmid: 29707519
|
[10] |
Chung LH, Liu D, Liu XT, et al. Ceramide Transfer Protein (CERT): An Overlooked Molecular Player in Cancer[J]. Int J Mol Sci, 2021, 22(24):13184. doi: 10.3390/ijms222413184.
|
[11] |
Qi L, Zhou H, Wang Y, et al. The role of selenoprotein P in the determining the sensitivity of cervical cancer patients to concurrent chemoradiotherapy: A metabonomics-based analysis[J]. J Trace Elem Med Biol, 2022, 73:127041. doi: 10.1016/j.jtemb.2022.127041.
|
[12] |
Piazzesi A, Afsar SY, van Echten-Deckert G. Sphingolipid metabolism in the development and progression of cancer: one cancer′s help is another′s hindrance[J]. Mol Oncol, 2021, 15(12):3256-3279. doi: 10.1002/1878-0261.13063.
pmid: 34289244
|
[13] |
Zhou H, Li Q, Wang T, et al. Exploring metabolomics biomarkers for evaluating the effectiveness of concurrent radiochemotherapy for cervical cancers[J]. Transl Cancer Res, 2020, 9(4):2734-2747. doi: 10.21037/tcr.2020.02.49.
pmid: 35117632
|
[14] |
Zhang F, Zhang H. UDP-Glucose Ceramide Glycosyltransferase Contributes to the Proliferation and Glycolysis of Cervical Cancer Cells by Regulating the PI3K/AKT Pathway[J]. Ann Clin Lab Sci, 2021, 51(5):663-669.
pmid: 34686508
|
[15] |
王湘炼, 徐炜, 朱姝, 等. 甲基化在子宫内膜癌中的研究进展[J]. 国际妇产科学杂志, 2023, 50(1):6-10. doi:10.12280/gjfckx.20220266.
|
[16] |
Cheng F, Fan W, Gui L, et al. Serum lipidomic profiling by UHPLC-MS/MS may be able to detect early-stage endometrial cancer[J]. Anal Bioanal Chem, 2023, 415(10):1841-1854. doi: 10.1007/s00216-023-04586-x.
pmid: 36799979
|
[17] |
Njoku K, Campbell AE, Geary B, et al. Metabolomic Biomarkers for the Detection of Obesity-Driven Endometrial Cancer[J]. Cancers (Basel), 2021, 13(4):718. doi: 10.3390/cancers13040718.
|
[18] |
Dossus L, Kouloura E, Biessy C, et al. Prospective analysis of circulating metabolites and endometrial cancer risk[J]. Gynecol Oncol, 2021, 162(2):475-481. doi: 10.1016/j.ygyno.2021.06.001.
pmid: 34099314
|
[19] |
Knific T, Vouk K, Smrkolj Š, et al. Models including plasma levels of sphingomyelins and phosphatidylcholines as diagnostic and prognostic biomarkers of endometrial cancer[J]. J Steroid Biochem Mol Biol, 2018, 178:312-321. doi: 10.1016/j.jsbmb.2018.01.012.
|
[20] |
Knapp P, Baranowski M, Knapp M, et al. Altered sphingolipid metabolism in human endometrial cancer[J]. Prostaglandins Other Lipid Mediat, 2010, 92(1/2/3/4):62-66. doi: 10.1016/j.prostaglandins.2010.03.002.
|
[21] |
Bozzini N, Avnet S, Baldini N, et al. Epigenetic Regulation Mediated by Sphingolipids in Cancer[J]. Int J Mol Sci, 2023, 24(6):5294. doi: 10.3390/ijms24065294.
|
[22] |
Wang Z, Zhang HM, Guo YR, et al. Role of sphingosine-1-phosphate receptors in the tumor microenvironment: prospects for cancer immunotherapy[J]. Eur Rev Med Pharmacol Sci, 2023, 27(2):713-727. doi: 10.26355/eurrev_202301_31074.
|
[23] |
Mojakgomo R, Mbita Z, Dlamini Z. Linking the ceramide synthases (CerSs) 4 and 5 with apoptosis, endometrial and colon cancers[J]. Exp Mol Pathol, 2015, 98(3):585-592. doi: 10.1016/j.yexmp.2015.03.019.
pmid: 25779024
|
[24] |
Knapp P, Bodnar L, Błachnio-Zabielska A, et al. Blood bioactive sphingolipids in patients with advanced serous epithelial ovarian cancer - mass spectrometry analysis[J]. Arch Med Sci, 2021, 17(1):53-61. doi: 10.5114/aoms.2018.76996.
pmid: 33488856
|
[25] |
Jing F, Jing C, Dai X, et al. Sphingomyelin synthase 2 but not sphingomyelin synthase 1 is upregulated in ovarian cancer and involved in migration, growth and survival via different mechanisms[J]. Am J Transl Res, 2021, 13(5):4412-4421.
pmid: 34150023
|
[26] |
Pascuali N, Scotti L, Di Pietro M, et al. Ceramide-1-phosphate has protective properties against cyclophosphamide-induced ovarian damage in a mice model of premature ovarian failure[J]. Hum Reprod, 2018, 33(5):844-859. doi: 10.1093/humrep/dey045.
|
[27] |
Hernández-Coronado CG, Guzmán A, Castillo-Juárez H, et al. Sphingosine-1-phosphate (S1P) in ovarian physiology and disease[J]. Ann Endocrinol(Paris), 2019, 80(5/6):263-272. doi: 10.1016/j.ando.2019.06.003.
|
[28] |
Dai L, Wang C, Song K, et al. Activation of SphK1 by adipocytes mediates epithelial ovarian cancer cell proliferation[J]. J Ovarian Res, 2021, 14(1):62. doi: 10.1186/s13048-021-00815-y.
pmid: 33931106
|
[29] |
Pitman M, Oehler MK, Pitson SM. Sphingolipids as multifaceted mediators in ovarian cancer[J]. Cell Signal, 2021, 81:109949. doi: 10.1016/j.cellsig.2021.109949.
|
[30] |
Dai L, Wang C, Wang W, et al. Activation of SphK2 contributes to adipocyte-induced EOC cell proliferation[J]. Open Med(Wars), 2022, 17(1):229-238. doi: 10.1515/med-2022-0422.
|
[31] |
Hart PC, Chiyoda T, Liu X, et al. SPHK1 Is a Novel Target of Metformin in Ovarian Cancer[J]. Mol Cancer Res, 2019, 17(4):870-881. doi: 10.1158/1541-7786.MCR-18-0409.
pmid: 30655321
|
[32] |
Adamyan LV, Starodubtseva N, Borisova A, et al. Direct Mass Spectrometry Differentiation of Ectopic and Eutopic Endometrium in Patients with Endometriosis[J]. J Minim Invasive Gynecol, 2018, 25(3):426-433. doi: 10.1016/j.jmig.2017.08.658.
|
[33] |
Loy SL, Zhou J, Cui L, et al. Discovery and validation of peritoneal endometriosis biomarkers in peritoneal fluid and serum[J]. Reprod Biomed Online, 2021, 43(4):727-737. doi: 10.1016/j.rbmo.2021.07.002.
pmid: 34446375
|
[34] |
Yoshino O, Yamada-Nomoto K, Kano K, et al. Sphingosine 1 Phosphate(S1P) Increased IL-6 Expression and Cell Growth in Endometriotic Cells[J]. Reprod Sci, 2019, 26(11):1460-1467. doi: 10.1177/1933719119828112.
pmid: 30782093
|
[35] |
Ono Y, Kawakita T, Yoshino O, et al. Sphingosine 1-Phosphate (S1P) in the Peritoneal Fluid Skews M2 Macrophage and Contributes to the Development of Endometriosis[J]. Biomedicines, 2021, 9(11):1519. doi: 10.3390/biomedicines9111519.
|
[36] |
Chen Z, Wang C, Lin C, et al. Lipidomic Alterations and PPARα Activation Induced by Resveratrol Lead to Reduction in Lesion Size in Endometriosis Models[J]. Oxid Med Cell Longev, 2021, 2021:9979953. doi: 10.1155/2021/9979953.
|
[37] |
Tonoyan NM, Chagovets VV, Starodubtseva NL, et al. Alterations in lipid profile upon uterine fibroids and its recurrence[J]. Sci Rep, 2021, 11(1):11447. doi: 10.1038/s41598-021-89859-0.
pmid: 34075062
|
[38] |
Bernacchioni C, Ciarmela P, Vannuzzi V, et al. Sphingosine 1-phosphate signaling in uterine fibroids: implication in activin A pro-fibrotic effect[J]. Fertil Steril, 2021, 115(6):1576-1585. doi: 10.1016/j.fertnstert.2020.12.022.
pmid: 33500141
|
[39] |
Islam MS, Ciavattini A, Petraglia F, et al. Extracellular matrix in uterine leiomyoma pathogenesis: a potential target for future therapeutics[J]. Hum Reprod Update, 2018, 24(1):59-85. doi: 10.1093/humupd/dmx032.
pmid: 29186429
|
[40] |
Ding Y, Jiang Y, Zhu M, et al. Follicular fluid lipidomic profiling reveals potential biomarkers of polycystic ovary syndrome: A pilot study[J]. Front Endocrinol(Lausanne), 2022, 13:960274. doi: 10.3389/fendo.2022.960274.
|
[41] |
Liu L, Yin TL, Chen Y, et al. Follicular dynamics of glycerophospholipid and sphingolipid metabolisms in polycystic ovary syndrome patients[J]. J Steroid Biochem Mol Biol, 2019, 185:142-149. doi: 10.1016/j.jsbmb.2018.08.008.
|