[1] |
Adiguzel D, Celik-Ozenci C. FoxO1 is a cell-specific core transcription factor for endometrial remodeling and homeostasis during menstrual cycle and early pregnancy[J]. Hum Reprod Update, 2021, 27(3):570-583. doi: 10.1093/humupd/dmaa060.
doi: 10.1093/humupd/dmaa060
pmid: 33434267
|
[2] |
Liang J, Cao D, Zhang X, et al. miR-192-5p suppresses uterine receptivity formation through impeding epithelial transformation during embryo implantation[J]. Theriogenology, 2020, 157:360-371. doi: 10.1016/j.theriogenology.2020.08.009.
doi: 10.1016/j.theriogenology.2020.08.009
|
[3] |
Fullerton PT Jr, Monsivais D, Kommagani R, et al. Follistatin is critical for mouse uterine receptivity and decidualization[J]. Proc Natl Acad Sci U S A, 2017, 114(24):E4772-E4781. doi: 10.1073/pnas.1620903114.
doi: 10.1073/pnas.1620903114
|
[4] |
Kasvandik S, Saarma M, Kaart T, et al. Uterine Fluid Proteins for Minimally Invasive Assessment of Endometrial Receptivity[J]. J Clin Endocrinol Metab, 2020, 105(1):dgz019. doi: 10.1210/clinem/dgz019.
doi: 10.1210/clinem/dgz019
|
[5] |
Tan Q, Shi S, Liang J, et al. Endometrial cell-derived small extracellular vesicle miR-100-5p promotes functions of trophoblast during embryo implantation[J]. Mol Ther Nucleic Acids, 2021, 23:217-231. doi: 10.1016/j.omtn.2020.10.043.
doi: 10.1016/j.omtn.2020.10.043
|
[6] |
Stepanjuk A, Koel M, Pook M, et al. MUC20 expression marks the receptive phase of the human endometrium[J]. Reprod Biomed Online, 2019, 39(5):725-736. doi: 10.1016/j.rbmo.2019.05.004.
doi: S1472-6483(19)30538-3
pmid: 31519421
|
[7] |
Gou J, Hu T, Li L, et al. Role of epithelial-mesenchymal transition regulated by twist basic helix-loop-helix transcription factor 2 (Twist2) in embryo implantation in mice[J]. Reprod Fertil Dev, 2019, 31(5):932-940. doi: 10.1071/RD18314.
doi: 10.1071/RD18314
|
[8] |
汪沙, 段华, 郑德璇. 上皮-间质转化在子宫腺肌病中作用的研究进展[J]. 国际妇产科学杂志, 2020, 47(1):92-96. doi: 10.3969/j.issn.1674-1870.2020.01.022.
doi: 10.3969/j.issn.1674-1870.2020.01.022
|
[9] |
Owusu-Akyaw A, Krishnamoorthy K, Goldsmith LT, et al. The role of mesenchymal-epithelial transition in endometrial function[J]. Hum Reprod Update, 2019, 25(1):114-133. doi: 10.1093/humupd/dmy035.
doi: 10.1093/humupd/dmy035
pmid: 30407544
|
[10] |
Cui D, Sui L, Han X, et al. Aquaporin-3 mediates ovarian steroid hormone-induced motility of endometrial epithelial cells[J]. Hum Reprod, 2018, 33(11):2060-2073. doi: 10.1093/humrep/dey290.
doi: 10.1093/humrep/dey290
|
[11] |
Lin X, Chai G, Wu Y, et al.RNA m(6)A methylation regulates the epithelial mesenchymal transition of cancer cells and translation of Snail[J]. Nat Commun, 2019, 10(1):2065. doi: 10.1038/s41467-019-09865-9.
doi: 10.1038/s41467-019-09865-9
|
[12] |
Ran J, Yang HH, Huang HP, et al. ZEB1 modulates endometrial receptivity through epithelial-mesenchymal transition in endometrial epithelial cells in vitro[J]. Biochem Biophys Res Commun, 2020, 525(3):699-705. doi: 10.1016/j.bbrc.2020.02.153.
doi: 10.1016/j.bbrc.2020.02.153
|
[13] |
Li Z, Gou J, Jia J, et al. MicroRNA-429 functions as a regulator of epithelial-mesenchymal transition by targeting Pcdh8 during murine embryo implantation[J]. Hum Reprod, 2015, 30(3):507-518. doi: 10.1093/humrep/dev001.
doi: 10.1093/humrep/dev001
|
[14] |
Liu W, Niu Z, Li Q, et al. MicroRNA and Embryo Implantation[J]. Am J Reprod Immunol, 2016, 75(3):263-271. doi: 10.1111/aji.12470.
doi: 10.1111/aji.12470
|
[15] |
Li L, Gou J, Yi T, et al. MicroRNA-30a-3p regulates epithelial-mesenchymal transition to affect embryo implantation by targeting Snai2[J]. Biol Reprod, 2019, 100(5):1171-1179. doi: 10.1093/biolre/ioz022.
doi: 10.1093/biolre/ioz022
|
[16] |
Akbar R, Ullah K, Rahman TU, et al. miR-183-5p regulates uterine receptivity and enhances embryo implantation[J]. J Mol Endocrinol, 2020, 64(1):43-52. doi: 10.1530/JME-19-0184.
doi: 10.1530/JME-19-0184
|
[17] |
Ghahhari NM, Babashah S. Interplay between microRNAs and WNT/β-catenin signalling pathway regulates epithelial-mesenchymal transition in cancer[J]. Eur J Cancer, 2015, 51(12):1638-1649. doi: 10.1016/j.ejca.2015.04.021.
doi: 10.1016/j.ejca.2015.04.021
|
[18] |
Shariati M, Niknafs B, Seghinsara AM, et al. Administration of dexamethasone disrupts endometrial receptivity by alteration of expression of miRNA 223, 200a, LIF, Muc1, SGK1, and ENaC via the ERK1/2-mTOR pathway[J]. J Cell Physiol, 2019, 234(11):19629-19639. doi: 10.1002/jcp.28562.
doi: 10.1002/jcp.28562
|
[19] |
Shokrzadeh N, Alivand MR, Abedelahi A, et al. Calcitonin administration improves endometrial receptivity via regulation of LIF, Muc-1 and microRNA Let-7a in mice[J]. J Cell Physiol, 2019, 234(8):12989-13000. doi: 10.1002/jcp.27969.
doi: 10.1002/jcp.27969
pmid: 30536902
|
[20] |
Salker M, Teklenburg G, Molokhia M, et al. Natural selection of human embryos: impaired decidualization of endometrium disables embryo-maternal interactions and causes recurrent pregnancy loss[J]. PLoS One, 2010, 5(4):e10287. doi: 10.1371/journal.pone.0010287.
doi: 10.1371/journal.pone.0010287
|
[21] |
Xu Y, Lu J, Wu J, et al. HOXA10 co-factor MEIS1 is required for the decidualization in human endometrial stromal cell[J]. J Mol Endocrinol, 2020, 64(4):249-258. doi: 10.1530/JME-19-0100.
doi: 10.1530/JME-19-0100
|
[22] |
Alauddin M, Salker MS, Umbach AT, et al. Annexin A7 Regulates Endometrial Receptivity[J]. Front Cell Dev Biol, 2020, 8:770. doi: 10.3389/fcell.2020.00770.
doi: 10.3389/fcell.2020.00770
pmid: 32923441
|
[23] |
Zhou M, Xu H, Zhang D, et al. Decreased PIBF1/IL6/p-STAT3 during the mid-secretory phase inhibits human endometrial stromal cell proliferation and decidualization[J]. J Adv Res, 2021, 30:15-25. doi: 10.1016/j.jare.2020.09.002.
doi: 10.1016/j.jare.2020.09.002
|
[24] |
Tong J, Yang J, Lv H, et al. Dysfunction of pseudogene PGK1P2 is involved in preeclampsia by acting as a competing endogenous RNA of PGK1[J]. Pregnancy Hypertens, 2018, 13:37-45. doi: 10.1016/j.preghy.2018.05.003.
doi: 10.1016/j.preghy.2018.05.003
|
[25] |
Ma LN, Huang XB, Muyayalo KP, et al. Lactic Acid: A Novel Signaling Molecule in Early Pregnancy?[J]. Front Immunol, 2020, 11:279. doi: 10.3389/fimmu.2020.00279.
doi: 10.3389/fimmu.2020.00279
|
[26] |
Liu H, Huang X, Mor G, et al. Epigenetic modifications working in the decidualization and endometrial receptivity[J]. Cell Mol Life Sci, 2020, 77(11):2091-2101. doi: 10.1007/s00018-019-03395-9.
doi: 10.1007/s00018-019-03395-9
|
[27] |
Kim TH, Yoo JY, Choi KC, et al. Loss of HDAC3 results in nonreceptive endometrium and female infertility[J]. Sci Transl Med, 2019, 11(474):eaaf7533. doi: 10.1126/scitranslmed.aaf7533.
doi: 10.1126/scitranslmed.aaf7533
|
[28] |
Long J, Yang CS, He JL, et al. FOXO3a is essential for murine endometrial decidualization through cell apoptosis during early pregnancy[J]. J Cell Physiol, 2019, 234(4):4154-4166. doi: 10.1002/jcp.27167.
doi: 10.1002/jcp.27167
|
[29] |
Kelleher AM, Behura SK, Burns GW, et al. Integrative analysis of the forkhead box A2 (FOXA2) cistrome for the human endometrium[J]. FASEB J, 2019, 33(7):8543-8554. doi: 10.1096/fj.201900013R.
doi: 10.1096/fj.201900013R
pmid: 30951376
|
[30] |
Quenby S, Vince G, Farquharson R, et al. Recurrent miscarriage: a defect in nature′s quality control?[J]. Hum Reprod, 2002, 17(8):1959-1963. doi: 10.1093/humrep/17.8.1959.
doi: 10.1093/humrep/17.8.1959
|