[1] |
Rosenfeld CS. Placenta Extracellular Vesicles: Messengers Connecting Maternal and Fetal Systems[J]. Biomolecules, 2024, 14(8):995. doi: 10.3390/biom14080995.
|
[2] |
Hiremath SC, Weaver JD. Engineering of Trophoblast Extracellular Vesicle-Delivering Hydrogels for Localized Tolerance Induction in Cell Transplantation[J]. Cell Mol Bioeng, 2023, 16(4):341-354. doi: 10.1007/s12195-023-00778-8.
pmid: 37811006
|
[3] |
Poh QH, Rai A, Salamonsen LA, et al. Omics insights into extracellular vesicles in embryo implantation and their therapeutic utility[J]. Proteomics, 2023, 23(6):e2200107. doi: 10.1002/pmic.202200107.
|
[4] |
Margiana R. Mesenchymal stem cell-derived exosomes in preeclampsia: A next-generation therapeutic tool[J]. Cell Biochem Funct, 2024, 42(1):e3908. doi: 10.1002/cbf.3908.
pmid: 38269498
|
[5] |
Yang J, Li L, Wang L, et al. Trophoblast-derived miR-410-5p induces M2 macrophage polarization and mediates immunotolerance at the fetal-maternal interface by targeting the STAT1 signaling pathway[J]. J Transl Med, 2024, 22(1):19. doi: 10.1186/s12967-023-04831-y.
pmid: 38178171
|
[6] |
Shan Y, Hou B, Wang J, et al. Exploring the role of exosomal Micro-RNAs as potential biomarkers in preeclampsia[J]. Front Immunol, 2024, 15:1385950. doi: 10.3389/fimmu.2024.1385950.
|
[7] |
谢幸, 孔北华, 段涛. 妇产科学[M]. 9版. 北京: 人民卫生出版社, 2018.
|
[8] |
Paul N, Maiti K, Sultana Z, et al. Human placenta releases extracellular vesicles carrying corticotrophin releasing hormone mRNA into the maternal blood[J]. Placenta, 2024, 146:71-78. doi: 10.1016/j.placenta.2024.01.004.
pmid: 38190772
|
[9] |
Abu-Raya B, Michalski C, Sadarangani M, et al. Maternal Immunological Adaptation During Normal Pregnancy[J]. Front Immunol, 2020, 11:575197. doi: 10.3389/fimmu.2020.575197.
|
[10] |
Jahan F, Vasam G, Green AE, et al. Placental Mitochondrial Function and Dysfunction in Preeclampsia[J]. Int J Mol Sci, 2023, 24(4):4177. doi: 10.3390/ijms24044177.
|
[11] |
Du MR, Guo PF, Piao HL, et al. Embryonic trophoblasts induce decidual regulatory T cell differentiation and maternal-fetal tolerance through thymic stromal lymphopoietin instructing dendritic cells[J]. J Immunol, 2014, 192(4):1502-1511. doi: 10.4049/jimmunol.1203425.
|
[12] |
Ali Z, Khaliq S, Zaki S, et al. Altered expression of vascular endothelial growth factor, vascular endothelial growth factor receptor-1, vascular endothelial growth factor receptor-2, and Soluble Fms-like Tyrosine Kinase-1 in peripheral blood mononuclear cells from normal and preeclamptic pregnancies[J]. Chin J Physiol, 2019, 62(3):117-122. doi: 10.4103/CJP.CJP_15_19.
pmid: 31249265
|
[13] |
Esfandiari F, Heidari Khoei H, Saber M, et al. Disturbed progesterone signalling in an advanced preclinical model of endometriosis[J]. Reprod Biomed Online, 2021, 43(1):139-147. doi: 10.1016/j.rbmo.2020.12.011.
pmid: 34049811
|
[14] |
Sun F, Wang S, Du M. Functional regulation of decidual macrophages during pregnancy[J]. J Reprod Immunol, 2021, 143:103264. doi: 10.1016/j.jri.2020.103264.
|
[15] |
Tsao FY, Wu MY, Chang YL, et al. M1 macrophages decrease in the deciduae from normal pregnancies but not from spontaneous abortions or unexplained recurrent spontaneous abortions[J]. J Formos Med Assoc, 2018, 117(3):204-211. doi: 10.1016/j.jfma.2017.03.011.
|
[16] |
Artemova D, Vishnyakova P, Elchaninov A, et al. M1 macrophages as promising agents for cell therapy of endometriosis[J]. Heliyon, 2024, 10(16):e36340. doi: 10.1016/j.heliyon.2024.e36340.
|
[17] |
Raouia F, Mariem BJ, Nesrine E, et al. CD4+ T-cell Subsets and Cytokine Signature in Pemphigus Foliaceus Clinical Stratification beyond the th1/Th2 Paradigm[J]. Curr Mol Med, 2024 Jun 24. doi: 10.2174/0115665240305096240611064617.
|
[18] |
Somerset DA, Zheng Y, Kilby MD, et al. Normal human pregnancy is associated with an elevation in the immune suppressive CD25+ CD4+ regulatory T-cell subset[J]. Immunology, 2004, 112(1):38-43. doi: 10.1111/j.1365-2567.2004.01869.x.
pmid: 15096182
|
[19] |
Bao SH, Wang XP, De Lin Q, et al. Decidual CD4+CD25+CD127dim/- regulatory T cells in patients with unexplained recurrent spontaneous miscarriage[J]. Eur J Obstet Gynecol Reprod Biol, 2011, 155(1):94-98. doi: 10.1016/j.ejogrb.2010.11.007.
pmid: 21130556
|
[20] |
Galgani M, Insabato L, Calì G, et al. Regulatory T cells, inflammation, and endoplasmic reticulum stress in women with defective endometrial receptivity[J]. Fertil Steril, 2015, 103(6):1579-1586.e1. doi: 10.1016/j.fertnstert.2015.03.014.
pmid: 25935494
|
[21] |
Mittelberger J, Seefried M, Franitza M, et al. The Role of the Immune Checkpoint Molecules PD-1/PD-L1 and TIM-3/Gal-9 in the Pathogenesis of Preeclampsia-A Narrative Review[J]. Medicina(Kaunas), 2022, 58(2):157. doi: 10.3390/medicina58020157.
|
[22] |
Veras E, Kurman RJ, Wang TL, et al. PD-L1 Expression in Human Placentas and Gestational Trophoblastic Diseases[J]. Int J Gynecol Pathol, 2017, 36(2):146-153. doi: 10.1097/PGP.0000000000000305.
pmid: 27362903
|
[23] |
Miko E, Meggyes M, Doba K, et al. Immune Checkpoint Molecules in Reproductive Immunology[J]. Front Immunol, 2019, 10:846. doi: 10.3389/fimmu.2019.00846.
pmid: 31057559
|
[24] |
Zhang YH, Aldo P, You Y, et al. Trophoblast-secreted soluble-PD-L1 modulates macrophage polarization and function[J]. J Leukoc Biol, 2020, 108(3):983-998. doi: 10.1002/JLB.1A0420-012RR.
|
[25] |
Miko E, Meggyes M, Bogar B, et al. Involvement of Galectin-9/TIM-3 pathway in the systemic inflammatory response in early-onset preeclampsia[J]. PLoS One, 2013, 8(8):e71811. doi: 10.1371/journal.pone.0071811.
|
[26] |
Wang S, Chen C, Sun F, et al. Involvement of the Tim-3 Pathway in the Pathogenesis of Pre-Eclampsia[J]. Reprod Sci, 2021, 28(12):3331-3340. doi: 10.1007/s43032-021-00675-3.
pmid: 34231168
|
[27] |
Mittelberger J, Seefried M, Löb S, et al. The expression of TIM-3 and Gal-9 on macrophages and Hofbauer cells in the placenta of preeclampsia patients[J]. J Reprod Immunol, 2024, 164:104296. doi: 10.1016/j.jri.2024.104296.
|