[1] |
李佳妮, 马堃, 范晓迪, 等. 基于sirtuins探讨卵巢早衰的发生机制[J]. 中国病理生理杂志, 2022, 38(10):1901-1906. doi: 10.3969/j.issn.1000-4718.2022.10.022.
|
[2] |
Ahmed M, Riaz U, Lv H, et al. A Molecular Perspective and Role of NAD+ in Ovarian Aging[J]. Int J Mol Sci, 2024, 25(9):4680. doi: 10.3390/ijms25094680.
|
[3] |
Iljas JD, Wei Z, Homer HA. Sirt1 sustains female fertility by slowing age-related decline in oocyte quality required for post-fertilization embryo development[J]. Aging Cell, 2020, 19(9):e13204. doi: 10.1111/acel.13204.
|
[4] |
Guo L, Liu X, Chen H, et al. Decrease in ovarian reserve through the inhibition of SIRT1-mediated oxidative phosphorylation[J]. Aging (Albany NY), 2022, 14(5):2335-2347. doi: 10.18632/aging.203942.
|
[5] |
Chen H, Zhang G, Peng Y, et al. Danggui Shaoyao San protects cyclophosphamide-induced premature ovarian failure by inhibiting apoptosis and oxidative stress through the regulation of the SIRT1/p53 signaling pathway[J]. J Ethnopharmacol, 2024, 323:117718.doi: 10.1016/j.jep.2024.117718.
|
[6] |
Xiong Y, Liu T, Wang S, et al. Cyclophosphamide promotes the proliferation inhibition of mouse ovarian granulosa cells and premature ovarian failure by activating the lncRNA-Meg3-p53-p66Shc pathway[J]. Gene, 2017, 596:1-8. doi: 10.1016/j.gene.2016.10.011.
pmid: 27729272
|
[7] |
Kuscu N, Gungor-Ordueri NE, Sozen B, et al. FoxO transcription factors 1 regulate mouse preimplantation embryo development[J]. J Assist Reprod Genet, 2019, 36(10):2121-2133. doi: 10.1007/s10815-019-01555-1.
|
[8] |
Nishigaki A, Kido T, Kida N, et al. Resveratrol protects mitochondrial quantity by activating SIRT1/PGC-1α expression during ovarian hypoxia[J]. Reprod Med Biol, 2020, 19(2):189-197. doi: 10.1002/rmb2.12323.
pmid: 32273826
|
[9] |
An Z, Xie C, Lu H, et al. Mitochondrial Morphology and Function Abnormality in Ovarian Granulosa Cells of Patients with Diminished Ovarian Reserve[J]. Reprod Sci, 2024, 31(7):2009-2020. doi: 10.1007/s43032-024-01459-1.
|
[10] |
Shan H, Li X, Ouyang C, et al. Salidroside prevents PM2.5-induced BEAS-2B cell apoptosis via SIRT1-dependent regulation of ROS and mitochondrial function[J]. Ecotoxicol Environ Saf, 2022, 231:113170. doi: 10.1016/j.ecoenv.2022.113170.
|
[11] |
Nevoral J, Drutovic D, Vaskovicova M, et al. Dynamics and necessity of SIRT1 for maternal-zygotic transition[J]. Sci Rep, 2024, 14(1):21598. doi: 10.1038/s41598-024-72595-6.
pmid: 39285243
|
[12] |
金清美, 韩乔松, 梁竞男, 等. 沉默信息调节因子2介导蛋白质去乙酰化与卵母细胞衰老[J]. 国际妇产科学杂志, 2024, 51(1):99-104. doi: 10.12280/gjfckx.20230739.
|
[13] |
Ju JQ, Zhang HL, Wang Y, et al. Kinesin KIFC3 is essential for microtubule stability and cytokinesis in oocyte meiosis[J]. Cell Commun Signal, 2024, 22(1):199. doi: 10.1186/s12964-024-01589-8.
|
[14] |
Qiu D, Hou X, Han L, et al. Sirt2-BubR1 acetylation pathway mediates the effects of advanced maternal age on oocyte quality[J]. Aging Cell, 2018, 17(1):e12698. doi: 10.1111/acel.12698.
|
[15] |
Sitry-Shevah D, Miniowitz-Shemtov S, Liburkin Dan T, et al. The Mitotic Checkpoint Complex controls the association of Cdc20 regulatory protein with the ubiquitin ligase APC/C in mitosis[J]. Proc Natl Acad Sci U S A, 2024, 121(37):e2413089121. doi: 10.1073/pnas.2413089121.
|
[16] |
Li C, He X, Huang Z, et al. Melatonin ameliorates the advanced maternal age-associated meiotic defects in oocytes through the SIRT2-dependent H4K16 deacetylation pathway[J]. Aging (Albany NY), 2020, 12(2):1610-1623. doi: 10.18632/aging.102703.
|
[17] |
Zhang L, Hou X, Ma R, et al. Sirt2 functions in spindle organization and chromosome alignment in mouse oocyte meiosis[J]. FASEB J, 2014, 28(3):1435-1445. doi: 10.1096/fj.13-244111.
pmid: 24334550
|
[18] |
Soh R, Hardy A, Zur Nieden NI. The FOXO signaling axis displays conjoined functions in redox homeostasis and stemness[J]. Free Radic Biol Med, 2021, 169:224-237. doi: 10.1016/j.freeradbiomed.2021.04.022.
|
[19] |
Xu D, Wu L, Jiang X, et al. SIRT2 Inhibition Results in Meiotic Arrest, Mitochondrial Dysfunction, and Disturbance of Redox Homeostasis during Bovine Oocyte Maturation[J]. Int J Mol Sci, 2019, 20(6):1365. doi: 10.3390/ijms20061365.
|
[20] |
Grubisha O, Rafty LA, Takanishi CL, et al. Metabolite of SIR2 reaction modulates TRPM2 ion channel[J]. J Biol Chem, 2006, 281(20):14057-14065. doi: 10.1074/jbc.M513741200.
pmid: 16565078
|
[21] |
Zhao K, Tang J, Xie H, et al. Nicotinamide riboside attenuates myocardial ischemia-reperfusion injury via regulating SIRT3/SOD2 signaling pathway[J]. Biomed Pharmacother, 2024, 175:116689. doi: 10.1016/j.biopha.2024.116689.
|
[22] |
Janssen-Heininger Y, Reynaert NL, van der Vliet A, et al. Endoplasmic reticulum stress and glutathione therapeutics in chronic lung diseases[J]. Redox Biol, 2020, 33:101516. doi: 10.1016/j.redox.2020.101516.
|
[23] |
Long S, Zheng Y, Deng X, et al. Maintaining mitochondrial DNA copy number mitigates ROS-induced oocyte decline and female reproductive aging[J]. Commun Biol, 2024, 7(1):1229. doi: 10.1038/s42003-024-06888-x.
pmid: 39354016
|
[24] |
Yang L, Shang J, Wang H, et al. Promising anti-ovarian aging herbal formulation He′s Yangchao promotes in vitro maturation of oocytes from advanced maternal age mice[J]. J Ethnopharmacol, 2024, 318(Pt A):116890. doi: 10.1016/j.jep.2023.116890.
|
[25] |
Kaleler, Acikgoz AS, Gezer A, et al. A potential role of Sirtuin3 and its target enzyme activities in patients with ovarian endometrioma[J]. Gynecol Endocrinol, 2021, 37(11):1035-1040. doi: 10.1080/09513590.2021.1975674.
|
[26] |
Ju W, Zhao Y, Yu Y, et al. Mechanisms of mitochondrial dysfunction in ovarian aging and potential interventions[J]. Front Endocrinol(Lausanne), 2024, 15:1361289. doi: 10.3389/fendo.2024.1361289.
|
[27] |
Zhu J, Yang Q, Li H, et al. Sirt3 deficiency accelerates ovarian senescence without affecting spermatogenesis in aging mice[J]. Free Radic Biol Med, 2022, 193(Pt 2):511-525. doi: 10.1016/j.freeradbiomed.2022.10.324.
|
[28] |
Zeng J, Jiang M, Wu X, et al. SIRT4 is essential for metabolic control and meiotic structure during mouse oocyte maturation[J]. Aging Cell, 2018, 17(4):e12789. doi: 10.1111/acel.12789.
|
[29] |
Hou X, Zhang L, Han L, et al. Differing roles of pyruvate dehydrogenase kinases during mouse oocyte maturation[J]. J Cell Sci, 2015, 128(13):2319-2329. doi: 10.1242/jcs.167049.
pmid: 25991547
|
[30] |
Shen H, Ma W, Hu Y, et al. Mitochondrial Sirtuins in Cancer: A Revisited Review from Molecular Mechanisms to Therapeutic Strategies[J]. Theranostics, 2024, 14(7):2993-3013. doi: 10.7150/thno.97320.
pmid: 38773972
|
[31] |
Ding C, Qian C, Hou S, et al. Exosomal miRNA-320a Is Released from hAMSCs and Regulates SIRT4 to Prevent Reactive Oxygen Species Generation in POI[J]. Mol Ther Nucleic Acids, 2020, 21:37-50. doi: 10.1016/j.omtn.2020.05.013.
|
[32] |
Mori M, Cazzaniga G, Meneghetti F, et al. Insights on the Modulation of SIRT5 Activity: A Challenging Balance[J]. Molecules, 2022, 27(14):4449. doi: 10.3390/molecules27144449.
|
[33] |
Del Bianco D, Gentile R, Sallicandro L, et al. Electro-Metabolic Coupling of Cumulus-Oocyte Complex[J]. Int J Mol Sci, 2024, 25(10):5349. doi: 10.3390/ijms25105349.
|
[34] |
Gong L, Hou J, Yang H, et al. Kuntai capsule attenuates premature ovarian insufficiency by activating the FOXO3/SIRT5 signaling pathway in mice: A comprehensive study using UHPLC-LTQ-Orbitrap and integrated pharmacology[J]. J Ethnopharmacol, 2024, 322:117625.doi: 10.1016/j.jep.2023.117625.
|
[35] |
Ma C, Zhang X, Zhang Y, et al. Sirtuin 5-driven meiotic spindle assembly and actin-based migration in mouse oocyte meiosis[J]. Heliyon, 2024, 10(11):e32466. doi: 10.1016/j.heliyon.2024.e32466.
|
[36] |
Xiao H, Xie Y, Xi K, et al. Targeting Mitochondrial Sirtuins in Age-Related Neurodegenerative Diseases and Fibrosis[J]. Aging Dis, 2023, 14(5):1583-1605. doi: 10.14336/AD.2023.0203.
|
[37] |
Guo Z, Li P, Ge J, et al. SIRT6 in Aging, Metabolism, Inflammation and Cardiovascular Diseases[J]. Aging Dis, 2022, 13(6):1787-1822. doi: 10.14336/AD.2022.0413.
|
[38] |
Ge J, Li C, Li C, et al. SIRT6 participates in the quality control of aged oocytes via modulating telomere function[J]. Aging(Albany NY), 2019, 11(7):1965-1976. doi: 10.18632/aging.101885.
|
[39] |
Li L, Hua R, Hu K, et al. SIRT6 deficiency causes ovarian hypoplasia by affecting Plod1-related collagen formation[J]. Aging Cell, 2024, 23(2):e14031. doi: 10.1111/acel.14031.
|
[40] |
Raza U, Tang X, Liu Z, et al. SIRT7: the seventh key to unlocking the mystery of aging[J]. Physiol Rev, 2024, 104(1):253-280. doi: 10.1152/physrev.00044.2022.
|
[41] |
Ding C, Zhu L, Shen H, et al. Exosomal miRNA-17-5p derived from human umbilical cord mesenchymal stem cells improves ovarian function in premature ovarian insufficiency by regulating SIRT7[J]. Stem Cells, 2020, 38(9):1137-1148. doi: 10.1002/stem.3204.
pmid: 32442343
|