[1] |
Heddar A, Ogur C, Da Costa S, et al. Genetic landscape of a large cohort of Primary Ovarian Insufficiency: New genes and pathways and implications for personalized medicine[J]. EBioMedicine, 2022, 84:104246. doi: 10.1016/j.ebiom.2022.104246.
doi: 10.1016/j.ebiom.2022.104246
|
[2] |
Chon SJ, Umair Z, Yoon MS. Premature Ovarian Insufficiency: Past, Present, and Future[J]. Front Cell Dev Biol, 2021, 9:672890. doi: 10.3389/fcell.2021.672890.
doi: 10.3389/fcell.2021.672890
|
[3] |
Ishizuka B. Current Understanding of the Etiology, Symptomatology, and Treatment Options in Premature Ovarian Insufficiency (POI)[J]. Front Endocrinol(Lausanne), 2021, 12:626924. doi: 10.3389/fendo.2021.626924.
doi: 10.3389/fendo.2021.626924
|
[4] |
Bhandari J, Thada PK, Puckett Y. Fanconi Anemia[EB/OL]. [2022-07-15]. https://www.researchgate.net/publication/342956278.
|
[5] |
Auerbach AD. Fanconi anemia and its diagnosis[J]. Mutat Res, 2009, 668(1/2):4-10. doi: 10.1016/j.mrfmmm.2009.01.013.
doi: 10.1016/j.mrfmmm.2009.01.013
|
[6] |
Lemonidis K, Arkinson C, Rennie ML, et al. Mechanism, specificity, and function of FANCD2-FANCI ubiquitination and deubiquitination[J]. FEBS J, 2022, 289(16):4811-4829. doi: 10.1111/febs.16077.
doi: 10.1111/febs.16077
|
[7] |
Badra Fajardo N, Taraviras S, Lygerou Z. Fanconi anemia proteins and genome fragility: unraveling replication defects for cancer therapy[J]. Trends Cancer, 2022, 8(6):467-481. doi: 10.1016/j.trecan.2022.01.015.
doi: 10.1016/j.trecan.2022.01.015
pmid: 35232683
|
[8] |
Ceccaldi R, Sarangi P, D′Andrea AD. The Fanconi anaemia pathway: new players and new functions[J]. Nat Rev Mol Cell Biol, 2016, 17(6):337-349. doi: 10.1038/nrm.2016.48.
doi: 10.1038/nrm.2016.48
|
[9] |
Pan Y, Yang X, Zhang F, et al. A heterozygous hypomorphic mutation of Fanca causes impaired follicle development and subfertility in female mice[J]. Mol Genet Genomics, 2021, 296(1):103-112. doi: 10.1007/s00438-020-01730-5.
doi: 10.1007/s00438-020-01730-5
pmid: 33025164
|
[10] |
Nadler JJ, Braun RE. Fanconi anemia complementation group C is required for proliferation of murine primordial germ cells[J]. Genesis, 2000, 27(3):117-123. doi: 10.1002/1526-968x(200007)27:3<117::aid-gene40>3.0.co;2-7.
doi: 10.1002/1526-968x(200007)27:3<117::aid-gene40>3.0.co;2-7
pmid: 10951504
|
[11] |
Bakker ST, van de Vrugt HJ, Visser JA, et al. Fancf-deficient mice are prone to develop ovarian tumours[J]. J Pathol, 2012, 226(1):28-39. doi: 10.1002/path.2992.
doi: 10.1002/path.2992
|
[12] |
Agoulnik AI, Lu B, Zhu Q, et al. A novel gene, Pog, is necessary for primordial germ cell proliferation in the mouse and underlies the germ cell deficient mutation, gcd[J]. Hum Mol Genet, 2002, 11(24):3047-3053. doi: 10.1093/hmg/11.24.3047.
doi: 10.1093/hmg/11.24.3047
pmid: 12417526
|
[13] |
Jarysta A, Riou L, Firlej V, et al. Abnormal migration behavior linked to Rac1 signaling contributes to primordial germ cell exhaustion in Fanconi anemia pathway-deficient Fancg-/- embryos[J]. Hum Mol Genet, 2021, 31(1):97-110. doi: 10.1093/hmg/ddab222.
doi: 10.1093/hmg/ddab222
pmid: 34368842
|
[14] |
Panday A, Willis NA, Elango R, et al. FANCM regulates repair pathway choice at stalled replication forks[J]. Mol Cell, 2021, 81(11):2428-2444.e6. doi: 10.1016/j.molcel.2021.03.044.
doi: 10.1016/j.molcel.2021.03.044
pmid: 33882298
|
[15] |
Bakker ST, van de Vrugt HJ, Rooimans MA, et al. Fancm-deficient mice reveal unique features of Fanconi anemia complementation group M[J]. Hum Mol Genet, 2009, 18(18):3484-3495. doi: 10.1093/hmg/ddp297.
doi: 10.1093/hmg/ddp297
pmid: 19561169
|
[16] |
Luo Y, Hartford SA, Zeng R, et al. Hypersensitivity of primordial germ cells to compromised replication-associated DNA repair involves ATM-p53-p21 signaling[J]. PLoS Genet, 2014, 10(7):e1004471. doi: 10.1371/journal.pgen.1004471.
doi: 10.1371/journal.pgen.1004471
|
[17] |
Jung M, Ramanagoudr-Bhojappa R, van Twest S, et al. Association of clinical severity with FANCB variant type in Fanconi anemia[J]. Blood, 2020, 135(18):1588-1602. doi: 10.1182/blood.2019003249.
doi: 10.1182/blood.2019003249
pmid: 32106311
|
[18] |
Cen C, Chen J, Lin L, et al. Fancb deficiency causes premature ovarian insufficiency in mice[J]. Biol Reprod, 2022, 107(3):790-799. doi: 10.1093/biolre/ioac103.
doi: 10.1093/biolre/ioac103
|
[19] |
Dubois EL, Guitton-Sert L, Béliveau M, et al. A Fanci knockout mouse model reveals common and distinct functions for FANCI and FANCD2[J]. Nucleic Acids Res, 2019, 47(14):7532-7547. doi: 10.1093/nar/gkz514.
doi: 10.1093/nar/gkz514
pmid: 31219578
|
[20] |
Sharan SK, Pyle A, Coppola V, et al. BRCA2 deficiency in mice leads to meiotic impairment and infertility[J]. Development, 2004, 131(1):131-142. doi: 10.1242/dev.00888.
doi: 10.1242/dev.00888
pmid: 14660434
|
[21] |
Hunt PA, Hassold TJ. Sex matters in meiosis[J]. Science, 2002, 296(5576):2181-2183. doi: 10.1126/science.1071907.
doi: 10.1126/science.1071907
pmid: 12077403
|
[22] |
Yang X, Zhang X, Jiao J, et al. Rare variants in FANCA induce premature ovarian insufficiency[J]. Hum Genet, 2019, 138(11/12):1227-1236. doi: 10.1007/s00439-019-02059-9.
doi: 10.1007/s00439-019-02059-9
|
[23] |
Yang Y, Guo T, Liu R, et al. FANCL gene mutations in premature ovarian insufficiency[J]. Hum Mutat, 2020, 41(5):1033-1041. doi: 10.1002/humu.23997.
doi: 10.1002/humu.23997
pmid: 32048394
|
[24] |
Fouquet B, Pawlikowska P, Caburet S, et al. A homozygous FANCM mutation underlies a familial case of non-syndromic primary ovarian insufficiency[J]. Elife, 2017, 6:e30490. doi: 10.7554/eLife.30490.
doi: 10.7554/eLife.30490
|
[25] |
杨亚娟. FANCI和FANCL基因在早发性卵巢功能不全发病中的作用及机制研究[D]. 济南: 山东大学, 2020.
|
[26] |
Luo W, Guo T, Li G, et al. Variants in Homologous Recombination Genes EXO1 and RAD51 Related with Premature Ovarian Insufficiency[J]. J Clin Endocrinol Metab, 2020, 105(10):dgaa505. doi: 10.1210/clinem/dgaa505.
doi: 10.1210/clinem/dgaa505
|
[27] |
Weinberg-Shukron A, Rachmiel M, Renbaum P, et al. Essential Role of BRCA2 in Ovarian Development and Function[J]. N Engl J Med, 2018, 379(11):1042-1049. doi: 10.1056/NEJMoa1800024.
doi: 10.1056/NEJMoa1800024
|
[28] |
Turchetti D, Zuntini R, Tricarico R, et al. BRCA2 in Ovarian Development and Function[J]. N Engl J Med, 2019, 380(11):1086-1087. doi: 10.1056/NEJMc1813800.
doi: 10.1056/NEJMc1813800
|
[29] |
Yang Y, Guo J, Dai L, et al. XRCC2 mutation causes meiotic arrest, azoospermia and infertility[J]. J Med Genet, 2018, 55(9):628-636. doi: 10.1136/jmedgenet-2017-105145.
doi: 10.1136/jmedgenet-2017-105145
pmid: 30042186
|
[30] |
Zhang YX, Li HY, He WB, et al. XRCC2 mutation causes premature ovarian insufficiency as well as non-obstructive azoospermia in humans[J]. Clin Genet, 2019, 95(3):442-443. doi: 10.1111/cge.13475.
doi: 10.1111/cge.13475
|
[31] |
Yang Y, Xu W, Gao F, et al. Transcription-replication conflicts in primordial germ cells necessitate the Fanconi anemia pathway to safeguard genome stability[J]. Proc Natl Acad Sci U S A, 2022, 119(34):e2203208119. doi: 10.1073/pnas.2203208119.
doi: 10.1073/pnas.2203208119
|
[32] |
Nie Y, Wilson AF, DeFalco T, et al. FANCD2 is required for the repression of germline transposable elements[J]. Reproduction, 2020, 159(6):659-668. doi: 10.1530/REP-19-0436.
doi: 10.1530/REP-19-0436
pmid: 32163912
|
[33] |
Heddar A, Misrahi M. Concerns regarding the potentially causal role of FANCA heterozygous variants in human primary ovarian insufficiency[J]. Hum Genet, 2021, 140(4):691-694. doi: 10.1007/s00439-020-02232-5.
doi: 10.1007/s00439-020-02232-5
pmid: 33151384
|
[34] |
Heddar A, Misrahi M. Should FANCL heterozygous pathogenic variants be considered as potentially causative of primary ovarian insufficiency?[J]. Hum Mutat, 2020, 41(9):1697-1699. doi: 10.1002/humu.24077.
doi: 10.1002/humu.24077
pmid: 32851770
|