国际妇产科学杂志 ›› 2022, Vol. 49 ›› Issue (4): 388-392.doi: 10.12280/gjfckx.20211109
收稿日期:
2021-12-02
出版日期:
2022-08-15
发布日期:
2022-08-19
通讯作者:
赵卫红
E-mail:sydeyzwh@sxmu.edu.cn
基金资助:
Received:
2021-12-02
Published:
2022-08-15
Online:
2022-08-19
Contact:
ZHAO Wei-hong
E-mail:sydeyzwh@sxmu.edu.cn
摘要:
宫颈癌是女性最常见的恶性肿瘤之一,我国的发病率和死亡率一直居高不下。人乳头瘤病毒的持续感染是宫颈癌的主要危险因素,但并非唯一因素,遗传和表观遗传因素与宫颈癌的关系不容忽视。近年有研究发现长链非编码RNA(long non-coding RNA,lncRNA)与宫颈癌的发生、发展有关。许多lncRNA可以作为竞争性内源RNA(competing endogenous RNA,ceRNA)广泛参与调控一些关键的信号通路,如Wnt/β-catenin依赖性途径、丝裂原活化蛋白激酶通路、磷脂酰肌醇3激酶/蛋白激酶B通路和Notch信号通路等,从而在宫颈癌的发生、发展中发挥致癌或抑癌作用,因此许多lncRNA已成为宫颈癌新的诊断和预后生物标志物。综述lncRNA的结构与功能,以及lncRNA在宫颈癌中的作用机制。
李琦, 赵卫红. 长链非编码RNA在宫颈癌中的作用[J]. 国际妇产科学杂志, 2022, 49(4): 388-392.
LI Qi, ZHAO Wei-hong. The Role of LncRNA in Cervical Cancer[J]. Journal of International Obstetrics and Gynecology, 2022, 49(4): 388-392.
[1] |
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics,2020:GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin,2021, 71(3):209-249. doi: 10.3322/caac.21660.
doi: 10.3322/caac.21660 |
[2] |
Della Fera AN, Warburton A, Coursey TL, et al. Persistent Human Papillomavirus Infection[J]. Viruses, 2021, 13(2):321. doi: 10.3390/v13020321.
doi: 10.3390/v13020321 |
[3] |
Yeo-Teh NSL, Ito Y, Jha S. High-Risk Human Papillomaviral Oncogenes E6 and E7 Target Key Cellular Pathways to Achieve Oncogenesis[J]. Int J Mol Sci, 2018, 19(6):1706. doi: 10.3390/ijms19061706.
doi: 10.3390/ijms19061706 |
[4] |
Sharma S, Munger K. The Role of Long Noncoding RNAs in Human Papillomavirus-associated Pathogenesis[J]. Pathogens, 2020, 9(4):289. doi: 10.3390/pathogens9040289.
doi: 10.3390/pathogens9040289 |
[5] |
Salmena L, Poliseno L, Tay Y, et al. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language?[J]. Cell, 2011, 146(3):353-358. doi: 10.1016/j.cell.2011.07.014.
doi: 10.1016/j.cell.2011.07.014 |
[6] |
Chan JJ, Tay Y. Noncoding RNA: RNA Regulatory Networks in Cancer[J]. Int J Mol Sci, 2018, 19(5):1310. doi: 10.3390/ijms19051310.
doi: 10.3390/ijms19051310 |
[7] |
Chu Q, Gu X, Zheng Q, et al. Long noncoding RNA SNHG4: a novel target in human diseases[J]. Cancer Cell Int, 2021, 21(1):583. doi: 10.1186/s12935-021-02292-1.
doi: 10.1186/s12935-021-02292-1 |
[8] |
Bhan A, Soleimani M, Mandal SS. Long Noncoding RNA and Cancer: A New Paradigm[J]. Cancer Res, 2017, 77(15):3965-3981. doi: 10.1158/0008-5472.CAN-16-2634.
doi: 10.1158/0008-5472.CAN-16-2634 |
[9] |
Kim HJ, Lee DW, Yim GW, et al. Long non-coding RNA HOTAIR is associated with human cervical cancer progression[J]. Int J Oncol, 2015, 46(2):521-530. doi: 10.3892/ijo.2014.2758.
doi: 10.3892/ijo.2014.2758 |
[10] |
Liguori G, Cerrone M, De Chiara A, et al. The Role of lncRNAs in Rare Tumors with a Focus on HOX Transcript Antisense RNA (HOTAIR)[J]. Int J Mol Sci, 2021, 22(18):10160. doi: 10.3390/ijms221810160.
doi: 10.3390/ijms221810160 |
[11] |
Salmerón-Bárcenas EG, Illades-Aguiar B, Del Moral-Hernández O, et al. HOTAIR Knockdown Decreased the Activity Wnt/β-Catenin Signaling Pathway and Increased the mRNA Levels of Its Negative Regulators in Hela Cells[J]. Cell Physiol Biochem, 2019, 53(6):948-960. doi: 10.33594/000000188.
doi: 10.33594/000000188 pmid: 31820855 |
[12] |
Liu M, Jia J, Wang X, et al. Long non-coding RNA HOTAIR promotes cervical cancer progression through regulating BCL2 via targeting miR-143-3p[J]. Cancer Biol Ther, 2018, 19(5):391-399. doi: 10.1080/15384047.2018.1423921.
doi: 10.1080/15384047.2018.1423921 |
[13] |
Zhou Y, Wang Y, Lin M, et al. LncRNA HOTAIR promotes proliferation and inhibits apoptosis by sponging miR-214-3p in HPV16 positive cervical cancer cells[J]. Cancer Cell Int, 2021, 21(1):400. doi: 10.1186/s12935-021-02103-7.
doi: 10.1186/s12935-021-02103-7 pmid: 34320988 |
[14] |
Zhang W, Liu J, Wu Q, et al. HOTAIR Contributes to Stemness Acquisition of Cervical Cancer through Regulating miR-203 Interaction with ZEB1 on Epithelial-Mesenchymal Transition[J]. J Oncol, 2021, 2021:4190764. doi: 10.1155/2021/4190764.
doi: 10.1155/2021/4190764 |
[15] |
Botti G, Collina F, Scognamiglio G, et al. LncRNA HOTAIR Polymorphisms Association with Cancer Susceptibility in Different Tumor Types[J]. Curr Drug Targets, 2018, 19(10):1220-1226. doi: 10.2174/1389450118666170622091940.
doi: 10.2174/1389450118666170622091940 |
[16] |
Zhou YH, Cui YH, Wang T, et al. Long non-coding RNA HOTAIR in cervical cancer:Molecular marker,mechanistic insight,and therapeutic target[J]. Adv Clin Chem, 2020, 97:117-140. doi: 10.1016/bs.acc.2019.12.004.
doi: 10.1016/bs.acc.2019.12.004 |
[17] |
Shen H, Wang L, Xiong J, et al. Long non-coding RNA CCAT1 promotes cervical cancer cell proliferation and invasion by regulating the miR-181a-5p/MMP14 axis[J]. Cell Cycle, 2019, 18(10):1110-1121. doi: 10.1080/15384101.2019.1609829.
doi: 10.1080/15384101.2019.1609829 pmid: 31084453 |
[18] |
Li R, Liu J, Qi J. Knockdown of long non-coding RNA CCAT1 suppresses proliferation and EMT of human cervical cancer cell lines by down-regulating Runx2[J]. Exp Mol Pathol, 2020, 113:104380. doi: 10.1016/j.yexmp.2020.104380.
doi: 10.1016/j.yexmp.2020.104380 |
[19] |
Zhang L, Guo C, Ji T, et al. SOX2 Regulates lncRNA CCAT1/MicroRNA-185-3p/FOXP3 Axis to Affect the Proliferation and Self-Renewal of Cervical Cancer Stem Cells[J]. Nanoscale Res Lett, 2021, 16(1):2. doi: 10.1186/s11671-020-03449-z.
doi: 10.1186/s11671-020-03449-z pmid: 33394184 |
[20] |
Chang QQ, Chen CY, Chen Z, et al. LncRNA PVT1 promotes proliferation and invasion through enhancing Smad3 expression by sponging miR-140-5p in cervical cancer[J]. Radiol Oncol, 2019, 53(4):443-452. doi: 10.2478/raon-2019-0048.
doi: 10.2478/raon-2019-0048 |
[21] |
Liu X, Shen X, Zhang J. Long non-coding RNA LINC00514 promotes the proliferation and invasion through the miR-708-5p/HOXB3 axis in cervical squamous cell carcinoma[J]. Environ Toxicol, 2022, 37(1):161-170. doi: 10.1002/tox.23387.
doi: 10.1002/tox.23387 |
[22] |
An M, Xing X, Chen T. Long non-coding RNA UCA1 enhances cervical cancer cell proliferation and invasion by regulating microRNA-299-3p expression[J]. Oncol Lett, 2021, 22(5):772. doi: 10.3892/ol.2021.13033.
doi: 10.3892/ol.2021.13033 |
[23] |
Li L, Ma Y, Maerkeya K, et al. LncRNA OIP5-AS1 Regulates the Warburg Effect Through miR-124-5p/IDH2/HIF-1α Pathway in Cervical Cancer[J]. Front Cell Dev Biol, 2021, 9:655018. doi: 10.3389/fcell.2021.655018.
doi: 10.3389/fcell.2021.655018 |
[24] |
Zhang J, Liu HL, Liu JB, et al. LncRNA AL592284.1 facilitates proliferation and metastasis of cervical cancer cells via miR-30a-5p/Vimentin/EMT axis[J]. Biochem Biophys Res Commun, 2021, 577:95-102. doi: 10.1016/j.bbrc.2021.09.014.
doi: 10.1016/j.bbrc.2021.09.014 |
[25] |
Song H, Liu Y, Liang H, et al. SPINT1-AS1 Drives Cervical Cancer Progression via Repressing miR-214 Biogenesis[J]. Front Cell Dev Biol, 2021, 9:691140. doi: 10.3389/fcell.2021.691140.
doi: 10.3389/fcell.2021.691140 |
[26] |
Pan X, Cao YM, Liu JH, et al. MEG3 Induces Cervical Carcinoma Cells’ Apoptosis Through Endoplasmic Reticulum Stress by miR-7-5p/STC1 Axis[J]. Cancer Biother Radiopharm, 2021, 36(6):501-510. doi: 10.1089/cbr.2019.3344.
doi: 10.1089/cbr.2019.3344 |
[27] |
Zhang J, Gao Y. Long non-coding RNA MEG3 inhibits cervical cancer cell growth by promoting degradation of P-STAT3 protein via ubiquitination[J]. Cancer Cell Int, 2019, 19:175. doi: 10.1186/s12935-019-0893-z.
doi: 10.1186/s12935-019-0893-z pmid: 31320837 |
[28] |
Yang W, Xu X, Hong L, et al. Upregulation of lncRNA GAS5 inhibits the growth and metastasis of cervical cancer cells[J]. J Cell Physiol, 2019, 234(12):23571-23580. doi: 10.1002/jcp.28926.
doi: 10.1002/jcp.28926 |
[29] |
Li Y, Wan YP, Bai Y. Correlation between long strand non-coding RNA GASS expression and prognosis of cervical cancer patients[J]. Eur Rev Med Pharmacol Sci, 2018, 22(4):943-949. doi: 10.26355/eurrev_201802_14375.
doi: 10.26355/eurrev_201802_14375 |
[30] |
Zhang Y, Zhang J, Mao L, et al. Long noncoding RNA HCG11 inhibited growth and invasion in cervical cancer by sponging miR-942-5p and targeting GFI1[J]. Cancer Med, 2020, 9(19):7062-7071. doi: 10.1002/cam4.3203.
doi: 10.1002/cam4.3203 |
[31] |
Ying Y, Tao Q. Epigenetic disruption of the WNT/beta-catenin signaling pathway in human cancers[J]. Epigenetics, 2009, 4(5):307-312. doi: 10.4161/epi.4.5.9371.
doi: 10.4161/epi.4.5.9371 pmid: 19633433 |
[32] |
Wu W, Guo L, Liang Z, et al. Lnc-SNHG16/miR-128 axis modulates malignant phenotype through WNT/β-catenin pathway in cervical cancer cells[J]. J Cancer, 2020, 11(8):2201-2212. doi: 10.7150/jca.40319.
doi: 10.7150/jca.40319 pmid: 32127947 |
[33] |
Dillon M, Lopez A, Lin E, et al. Progress on Ras/MAPK Signaling Research and Targeting in Blood and Solid Cancers[J]. Cancers(Basel), 2021, 13(20):5059. doi: 10.3390/cancers13205059.
doi: 10.3390/cancers13205059 |
[34] |
Chu D, Liu T, Yao Y, et al. LINC00997/MicroRNA 574-3p/CUL2 Promotes Cervical Cancer Development via Mitogen-Activated Protein Kinase Signaling[J]. Mol Cell Biol, 2021, 41(8):e0005921. doi: 10.1128/MCB.00059-21.
doi: 10.1128/MCB.00059-21 |
[35] |
Liu X, Yang Q, Yan J, et al. LncRNA MNX1-AS1 promotes the progression of cervical cancer through activating MAPK pathway[J]. J Cell Biochem, 2019, 120(3):4268-4277. doi: 10.1002/jcb.27712.
doi: 10.1002/jcb.27712 |
[36] |
Meng XJ, Wang JC, Wang AQ, et al. Downregulation of lncRNA CCHE1 inhibits cell proliferation, migration and invasion by suppressing MEK/ERK/c-MYC pathway in nasopharyngeal carcinoma[J]. Eur Rev Med Pharmacol Sci, 2020, 24(17):8880-8888. doi: 10.26355/eurrev_202009_22828.
doi: 10.26355/eurrev_202009_22828 |
[37] |
Martini M, De Santis MC, Braccini L, et al. PI3K/AKT signaling pathway and cancer: an updated review[J]. Ann Med, 2014, 46(6):372-383. doi: 10.3109/07853890.2014.912836.
doi: 10.3109/07853890.2014.912836 pmid: 24897931 |
[38] |
Yan SP, Chu DX, Qiu HF, et al. LncRNA LINC01305 silencing inhibits cell epithelial-mesenchymal transition in cervical cancer by inhibiting TNXB-mediated PI3K/Akt signalling pathway[J]. J Cell Mol Med, 2019, 23(4):2656-2666. doi: 10.1111/jcmm.14161.
doi: 10.1111/jcmm.14161 |
[39] |
Zhang D, Sun G, Zhang H, et al. Long non-coding RNA ANRIL indicates a poor prognosis of cervical cancer and promotes carcinogenesis via PI3K/Akt pathways[J]. Biomed Pharmacother, 2017, 85:511-516. doi: 10.1016/j.biopha.2016.11.058.
doi: 10.1016/j.biopha.2016.11.058 |
[40] |
Brzozowa-Zasada M, Piecuch A, Dittfeld A, et al. Notch signalling pathway as an oncogenic factor involved in cancer development[J]. Contemp Oncol(Pozn), 2016, 20(4):267-272. doi: 10.5114/wo.2016.61845.
doi: 10.5114/wo.2016.61845 |
[41] |
Rodrigues C, Joy LR, Sachithanandan SP, et al. Notch signalling in cervical cancer[J]. Exp Cell Res, 2019, 385(2):111682. doi: 10.1016/j.yexcr.2019.111682.
doi: 10.1016/j.yexcr.2019.111682 |
[42] |
Chen Y, Wu Q, Lin J, et al. DARS-AS1 accelerates the proliferation of cervical cancer cells via miR-628-5p/JAG1 axis to activate Notch pathway[J]. Cancer Cell Int, 2020, 20(1):535. doi: 10.1186/s12935-020-01592-2.
doi: 10.1186/s12935-020-01592-2 |
[43] |
He M, Wang Y, Cai J, et al. LncRNA DLEU2 promotes cervical cancer cell proliferation by regulating cell cycle and NOTCH pathway[J]. Exp Cell Res, 2021, 402(1):112551. doi: 10.1016/j.yexcr.2021.112551.
doi: 10.1016/j.yexcr.2021.112551 |
[44] |
Wu Q, Lu S, Zhang L, et al. LncRNA HOXA-AS2 Activates the Notch Pathway to Promote Cervical Cancer Cell Proliferation and Migration[J]. Reprod Sci, 2021, 28(10):3000-3009. doi: 10.1007/s43032-021-00626-y.
doi: 10.1007/s43032-021-00626-y |
[1] | 侯春艳, 杜秀萍, 王红红, 侯岳洋. 高迁移率族蛋白A2在胎儿生长受限发病机制中的研究进展[J]. 国际妇产科学杂志, 2025, 52(2): 127-131. |
[2] | 郭竞, 张茂祥, 周春鹤, 刘思宁, 李惠艳. 孟德尔随机化在暴露因素与宫颈癌因果关系中的研究进展[J]. 国际妇产科学杂志, 2025, 52(2): 169-174. |
[3] | 柴玲娜, 李艳丽, 石洁, 高晗, 欧阳夕颜, 程诗语. 吲哚菁绿示踪前哨淋巴结在早期宫颈癌中的应用[J]. 国际妇产科学杂志, 2025, 52(2): 175-179. |
[4] | 白耀俊, 王思瑶, 令菲菲, 张森淮, 李红丽, 刘畅. Trop-2及靶向Trop-2抗体偶联药物在妇科恶性肿瘤中的应用进展[J]. 国际妇产科学杂志, 2025, 52(1): 1-7. |
[5] | 胡明珠, 刘丽文, 黄蕾. HIV感染女性的阴道微生态变化与宫颈癌的相关研究[J]. 国际妇产科学杂志, 2025, 52(1): 13-18. |
[6] | 张云凤, 张宛玥, 卢悦, 王阳阳, 井佳雨, 牟婧祎, 王悦. ARID1A与PIK3CA突变在卵巢子宫内膜异位症恶变中的研究进展[J]. 国际妇产科学杂志, 2025, 52(1): 19-22. |
[7] | 张野, 陈巧云, 赵佳怡, 陈璐, 刘建荣. 纳米微球在宫颈癌预防与治疗中的应用进展[J]. 国际妇产科学杂志, 2025, 52(1): 8-12. |
[8] | 邱婉宁, 魏瑗. 单卵双胎妊娠不一致异常的病因学研究进展[J]. 国际妇产科学杂志, 2024, 51(6): 607-610. |
[9] | 陈星羽, 韦雅婧, 梁炎春. 基于基因组学图谱构建的子宫平滑肌肉瘤前沿进展[J]. 国际妇产科学杂志, 2024, 51(6): 641-647. |
[10] | 魏金花, 祁玉超, 沈晓亚. 1992—2021年基于年龄-时期-队列模型的中国宫颈癌发病和死亡分析[J]. 国际妇产科学杂志, 2024, 51(6): 664-668. |
[11] | 刘昱, 吴瑞芳, 李瑞珍. 宫颈癌ⅠB2期新辅助化疗根治性宫颈切除术后再妊娠一例[J]. 国际妇产科学杂志, 2024, 51(6): 669-671. |
[12] | 宋翰, 刘晗黎, 王希波. 宫颈癌背部软组织转移一例[J]. 国际妇产科学杂志, 2024, 51(6): 672-675. |
[13] | 高明周, 高冬梅, 马凤君, 张轲鑫, 张浩. 从雌激素波动视角探讨经前烦躁障碍症抑郁-疼痛发生基础研究进展[J]. 国际妇产科学杂志, 2024, 51(6): 703-706. |
[14] | 高艺苇, 罗伟, 吴琼, 穆玉兰. 铁死亡与早发性卵巢功能不全的关系[J]. 国际妇产科学杂志, 2024, 51(5): 497-502. |
[15] | 白耀俊, 胡晓红, 李红丽, 刘畅. 淋巴细胞活化基因-3在妇科肿瘤中的研究进展[J]. 国际妇产科学杂志, 2024, 51(5): 566-571. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||