国际妇产科学杂志 ›› 2023, Vol. 50 ›› Issue (1): 65-69.doi: 10.12280/gjfckx.20220735
收稿日期:
2022-09-13
出版日期:
2023-02-15
发布日期:
2023-03-02
通讯作者:
张多加,E-mail:基金资助:
MA Li-na, ZHANG Duo-jia△(), WU Xiao-ke
Received:
2022-09-13
Published:
2023-02-15
Online:
2023-03-02
Contact:
ZHANG Duo-jia, E-mail: 摘要:
巨噬细胞(macrophages)是妊娠期母体子宫蜕膜中数量第二丰富的淋巴细胞,可分泌多种具有抗炎和促炎作用的细胞因子和趋化因子。巨噬细胞除作为主要抗原呈递细胞参与蜕膜免疫外,还在母胎界面免疫耐受的建立和维持、滋养细胞侵入、血管生成和螺旋动脉重塑以及凋亡细胞的吞噬中发挥关键作用。因此,巨噬细胞的细胞数量、极化和功能异常与妊娠并发症如流产、子痫前期和早产等密切相关。综述近年子宫巨噬细胞极化、功能及其在正常妊娠建立、维持和病理性妊娠中作用机制的最新研究进展,以期为从免疫角度探讨病理性妊娠发病机制及研发精准防治策略提供新的思路。
马丽娜, 张多加, 吴效科. 子宫巨噬细胞在正常妊娠及病理性妊娠中的作用[J]. 国际妇产科学杂志, 2023, 50(1): 65-69.
MA Li-na, ZHANG Duo-jia, WU Xiao-ke. Mechanism of Uterine Macrophages in the Normal Pregnancy and Pathological Pregnancy[J]. Journal of International Obstetrics and Gynecology, 2023, 50(1): 65-69.
[1] |
Chang RQ, Zhou WJ, Li DJ, et al. Innate Lymphoid Cells at the Maternal-Fetal Interface in Human Pregnancy[J]. Int J Biol Sci, 2020, 16(6):957-969. doi: 10.7150/ijbs.38264.
doi: 10.7150/ijbs.38264 |
[2] |
Locati M, Curtale G, Mantovani A. Diversity, Mechanisms, and Significance of Macrophage Plasticity[J]. Annu Rev Pathol, 2020, 15:123-147. doi: 10.1146/annurev-pathmechdis-012418-012718.
doi: 10.1146/annurev-pathmechdis-012418-012718 pmid: 31530089 |
[3] |
Parasar P, Guru N, Nayak NR. Contribution of macrophages to fetomaternal immunological tolerance[J]. Hum Immunol, 2021, 82(5):325-331. doi: 10.1016/j.humimm.2021.02.013.
doi: 10.1016/j.humimm.2021.02.013 pmid: 33715911 |
[4] |
Ding J, Yang C, Zhang Y, et al. M2 macrophage-derived G-CSF promotes trophoblasts EMT, invasion and migration via activating PI3K/Akt/Erk1/2 pathway to mediate normal pregnancy[J]. J Cell Mol Med, 2021, 25(4):2136-2147. doi: 10.1111/jcmm.16191.
doi: 10.1111/jcmm.16191 pmid: 33393205 |
[5] |
Pan Y, Yang L, Chen D, et al. Decidual macrophage derived MMP3 contributes to extracellular matrix breakdown in spiral artery remodeling in early human pregnancy[J]. J Reprod Immunol, 2022, 150:103494. doi: 10.1016/j.jri.2022.103494.
doi: 10.1016/j.jri.2022.103494 |
[6] |
Kieler M, Hofmann M, Schabbauer G. More than just protein building blocks: how amino acids and related metabolic pathways fuel macrophage polarization[J]. FEBS J, 2021, 288(12):3694-3714. doi: 10.1111/febs.15715.
doi: 10.1111/febs.15715 pmid: 33460504 |
[7] |
Abdollahi E, Johnston TP, Ghaneifar Z, et al. Immunomodulatory Therapeutic Effects of Curcumin on M1/M2 Macrophage polarization in Inflammatory Diseases[J]. Curr Mol Pharmacol,2022 Mar 24. doi: 10.2174/1874467215666220324114624. Epub ahead of print.
doi: 10.2174/1874467215666220324114624 |
[8] |
Likhachov VK, Vashchenko VL, Taranovska OO. Impact Of Preventive Therapy On Regulating Mechanisms Of Decidual Macrophage Polarization In Pregnant Women With High Risk Of Preeclamplsia[J]. Wiad Lek, 2021, 74(9 cz 1):2123-2127.
pmid: 34725288 |
[9] |
Murata H, Tanaka S, Okada H. Immune Tolerance of the Human Decidua[J]. J Clin Med, 2021, 10(2):351. doi: 10.3390/jcm10020351.
doi: 10.3390/jcm10020351 |
[10] |
Silvano A, Seravalli V, Strambi N, et al. Tryptophan metabolism and immune regulation in the human placenta[J]. J Reprod Immunol, 2021, 147:103361. doi: 10.1016/j.jri.2021.103361.
doi: 10.1016/j.jri.2021.103361 |
[11] |
Zhao Y, Zheng Q, Jin L. The Role of B7 Family Molecules in Maternal-Fetal Immunity[J]. Front Immunol, 2020, 11:458. doi: 10.3389/fimmu.2020.00458.
doi: 10.3389/fimmu.2020.00458 pmid: 32265918 |
[12] |
Co EC, Gormley M, Kapidzic M, et al. Maternal decidual macrophages inhibit NK cell killing of invasive cytotrophoblasts during human pregnancy[J]. Biol Reprod, 2013, 88(6):155. doi: 10.1095/biolreprod.112.099465.
doi: 10.1095/biolreprod.112.099465 pmid: 23553431 |
[13] |
Manaster I, Mizrahi S, Goldman-Wohl D, et al. Endometrial NK cells are special immature cells that await pregnancy[J]. J Immunol, 2008, 181(3):1869-1876. doi: 10.4049/jimmunol.181.3.1869.
doi: 10.4049/jimmunol.181.3.1869 pmid: 18641324 |
[14] |
Liao HQ, Han MT, Cheng W, et al. Decidual-derived RANKL facilitates macrophages accumulation and residence at the maternal-fetal interface in human early pregnancy[J]. Am J Reprod Immunol, 2021, 86(2):e13406. doi: 10.1111/aji.13406.
doi: 10.1111/aji.13406 |
[15] |
Ding J, Zhang Y, Cai X, et al. Extracellular vesicles derived from M1 macrophages deliver miR-146a-5p and miR-146b-5p to suppress trophoblast migration and invasion by targeting TRAF6 in recurrent spontaneous abortion[J]. Theranostics, 2021, 11(12):5813-5830. doi: 10.7150/thno.58731.
doi: 10.7150/thno.58731 pmid: 33897883 |
[16] |
Huang HL, Yang HL, Lai ZZ, et al. Decidual IDO+ macrophage promotes the proliferation and restricts the apoptosis of trophoblasts[J]. J Reprod Immunol, 2021, 148:103364. doi: 10.1016/j.jri.2021.103364.
doi: 10.1016/j.jri.2021.103364 |
[17] |
Rozner AE, Durning M, Kropp J, et al. Macrophages modulate the growth and differentiation of rhesus monkey embryonic trophoblasts[J]. Am J Reprod Immunol, 2016, 76(5):364-375. doi: 10.1111/aji.12564.
doi: 10.1111/aji.12564 |
[18] |
Olaya-C M, Garrido M, Franco JA, et al. Spiral Arteries in Second Trimester of Pregnancy: When Is It Possible to Define Expected Physiological Remodeling as Abnormal?[J]. Reprod Sci, 2021, 28(4):1185-1193. doi: 10.1007/s43032-020-00403-3.
doi: 10.1007/s43032-020-00403-3 pmid: 33237514 |
[19] |
Tan W, Chen L, Guo L, et al. Relationship between macrophages in mouse uteri and angiogenesis in endometrium during the peri-implantation period[J]. Theriogenology, 2014, 82(7):1021-1027. doi: 10.1016/j.theriogenology.2014.07.025.
doi: 10.1016/j.theriogenology.2014.07.025 pmid: 25139754 |
[20] |
Choudhury RH, Dunk CE, Lye SJ, et al. Decidual leucocytes infiltrating human spiral arterioles are rich source of matrix metalloproteinases and degrade extracellular matrix in vitro and in situ[J]. Am J Reprod Immunol, 2019, 81(1):e13054. doi: 10.1111/aji.13054.
doi: 10.1111/aji.13054 |
[21] |
Tan S, Liu X, Chen L, et al. Fas/FasL mediates NF-κBp65/PUMA-modulated hepatocytes apoptosis via autophagy to drive liver fibrosis[J]. Cell Death Dis, 2021, 12(5):474. doi: 10.1038/s41419-021-03749-x.
doi: 10.1038/s41419-021-03749-x pmid: 33980818 |
[22] |
Lash GE, Pitman H, Morgan HL, et al. Decidual macrophages: key regulators of vascular remodeling in human pregnancy[J]. J Leukoc Biol, 2016, 100(2):315-325. doi: 10.1189/jlb.1A0815-351R.
doi: 10.1189/jlb.1A0815-351R |
[23] |
Abumaree MH, Chamley LW, Badri M, et al. Trophoblast debris modulates the expression of immune proteins in macrophages: a key to maternal tolerance of the fetal allograft?[J]. J Reprod Immunol, 2012, 94(2):131-141. doi: 10.1016/j.jri.2012.03.488.
doi: 10.1016/j.jri.2012.03.488 pmid: 22542910 |
[24] |
Zhang YH, Aldo P, You Y, et al. Trophoblast-secreted soluble-PD-L1 modulates macrophage polarization and function[J]. J Leukoc Biol, 2020, 108(3):983-998. doi: 10.1002/JLB.1A0420-012RR.
doi: 10.1002/JLB.1A0420-012RR |
[25] |
Cui L, Jin X, Xu F, et al. Circadian rhythm-associated Rev-erbα modulates polarization of decidual macrophage via the PI3K/Akt signaling pathway[J]. Am J Reprod Immunol, 2021, 86(3):e13436. doi: 10.1111/aji.13436.
doi: 10.1111/aji.13436 |
[26] |
Goto S, Ozaki Y, Suzumori N, et al. Role of cathepsin E in decidual macrophage of patients with recurrent miscarriage[J]. Mol Hum Reprod, 2014, 20(5):454-462. doi: 10.1093/molehr/gau008.
doi: 10.1093/molehr/gau008 pmid: 24464956 |
[27] |
Kolben TM, Rogatsch E, Vattai A, et al. PPARγ Expression Is Diminished in Macrophages of Recurrent Miscarriage Placentas[J]. Int J Mol Sci, 2018, 19(7):1872. doi: 10.3390/ijms19071872.
doi: 10.3390/ijms19071872 |
[28] |
Zhu X, Liu H, Zhang Z, et al. MiR-103 protects from recurrent spontaneous abortion via inhibiting STAT1 mediated M1 macrophage polarization[J]. Int J Biol Sci, 2020, 16(12):2248-2264. doi: 10.7150/ijbs.46144.
doi: 10.7150/ijbs.46144 pmid: 32549769 |
[29] |
Burton GJ, Redman CW, Roberts JM, et al. Pre-eclampsia: pathophysiology and clinical implications[J]. BMJ, 2019, 366:l2381. doi: 10.1136/bmj.l2381.
doi: 10.1136/bmj.l2381 |
[30] |
Jung E, Romero R, Yeo L, et al. The etiology of preeclampsia[J]. Am J Obstet Gynecol, 2022, 226(2S):S844-S866. doi: 10.1016/j.ajog.2021.11.1356.
doi: 10.1016/j.ajog.2021.11.1356 pmid: 35177222 |
[31] |
Leavey K, Grynspan D, Cox BJ. Both "canonical" and "immunological" preeclampsia subtypes demonstrate changes in placental immune cell composition[J]. Placenta, 2019, 83:53-56. doi: 10.1016/j.placenta.2019.06.384.
doi: S0143-4004(19)30508-9 pmid: 31477208 |
[32] |
Yavorskyi PV, Zozulia VM, Vanchuliak OY, et al. Pregnancy, complicated by preeclampsia: fetoplacental complex immune deadaptation and histostructural features[J]. Wiad Lek, 2020, 73(1):99-103.
pmid: 32124816 |
[33] |
Bürk MR, Troeger C, Brinkhaus R, et al. Severely reduced presence of tissue macrophages in the basal plate of pre-eclamptic placentae[J]. Placenta, 2001, 22(4):309-316. doi: 10.1053/plac.2001.0624.
doi: 10.1053/plac.2001.0624 pmid: 11286566 |
[34] |
Ophelders D, Gussenhoven R, Klein L, et al. Preterm Brain Injury, Antenatal Triggers, and Therapeutics: Timing Is Key[J]. Cells, 2020, 9(8):1871. doi: 10.3390/cells9081871.
doi: 10.3390/cells9081871 |
[35] |
Zha Y, Liu H, Lin X, et al. Immune Deviation in the Decidua During Term and Preterm Labor[J]. Front Immunol, 2022, 13:877314. doi: 10.3389/fimmu.2022.877314.
doi: 10.3389/fimmu.2022.877314 |
[36] |
Berezhna VA, Mamontova TV, Gromova AM. CD68+ M1 Macrophages Is Associated With Placental Insufficiency Under Fetal Growth Restriction[J]. Wiad Lek, 2021, 74(2):213-219.
pmid: 33813474 |
[37] |
Agrawal V, Jaiswal MK, Pamarthy S, et al. Role of Notch signaling during lipopolysaccharide-induced preterm labor[J]. J Leukoc Biol, 2016, 100(2):261-274. doi: 10.1189/jlb.3HI0515-200RR.
doi: 10.1189/jlb.3HI0515-200RR |
[38] |
Pandey M, Awasthi S. Role of MMP-1, MMP-8 and MMP-9 gene polymorphisms in preterm birth[J]. J Genet, 2020, 99:2.
doi: 10.1007/s12041-019-1161-7 |
[1] | 马玲, 李亚西, 赵敏, 王静, 李红丽. 细胞凋亡与不良妊娠结局关系的研究进展[J]. 国际妇产科学杂志, 2025, 52(2): 121-126. |
[2] | 杨洋, 马媛, 陈宥艺, 赵静, 马文娟. 重度子痫前期患者血清外泌体对人正常蜕膜免疫细胞功能的影响[J]. 国际妇产科学杂志, 2025, 52(2): 143-152. |
[3] | 张永清, 陈正云, 陈路萍, 颜国辉, 陈丹青. 剖宫产术中诊断足月宫角妊娠二例[J]. 国际妇产科学杂志, 2025, 52(2): 153-157. |
[4] | 陈晓娟, 张艳馨. 妊娠合并血友病A患者足月分娩一例[J]. 国际妇产科学杂志, 2025, 52(2): 158-160. |
[5] | 陈淑婉, 邓高丕, 袁烁. 子宫伴奇异形核平滑肌瘤一例[J]. 国际妇产科学杂志, 2025, 52(2): 187-190. |
[6] | 曹秀蓉, 周文柏, 范香, 王逸斐, 朱鹏峰. 单细胞RNA测序解析子宫内膜异位症血管生成机制[J]. 国际妇产科学杂志, 2025, 52(2): 199-205. |
[7] | 殷婷, 丛慧芳. 子宫内膜异位症与痛觉敏化的免疫学研究进展[J]. 国际妇产科学杂志, 2025, 52(2): 206-210. |
[8] | 江爱美, 张信美. 腹壁子宫内膜异位症的治疗进展[J]. 国际妇产科学杂志, 2025, 52(2): 211-216. |
[9] | 封玲, 李金林. 无乳链球菌感染致子宫穿孔并发感染性休克一例[J]. 国际妇产科学杂志, 2025, 52(2): 234-236. |
[10] | 白耀俊, 王思瑶, 令菲菲, 张森淮, 李红丽, 刘畅. Trop-2及靶向Trop-2抗体偶联药物在妇科恶性肿瘤中的应用进展[J]. 国际妇产科学杂志, 2025, 52(1): 1-7. |
[11] | 耿昊, 陈叙. 早产的产程特点及产时管理[J]. 国际妇产科学杂志, 2025, 52(1): 105-109. |
[12] | 侯春艳, 杜秀萍. 妊娠中晚期自发性子宫破裂二例[J]. 国际妇产科学杂志, 2025, 52(1): 110-113. |
[13] | 钟佩蕖, 招丽坚, 邹欣欣. 残角子宫妊娠行期待治疗至妊娠晚期一例[J]. 国际妇产科学杂志, 2025, 52(1): 114-116. |
[14] | 刘丽, 霍琰. 产褥期棒状杆菌感染致坏死性子宫肌炎一例[J]. 国际妇产科学杂志, 2025, 52(1): 117-120. |
[15] | 张云凤, 张宛玥, 卢悦, 王阳阳, 井佳雨, 牟婧祎, 王悦. ARID1A与PIK3CA突变在卵巢子宫内膜异位症恶变中的研究进展[J]. 国际妇产科学杂志, 2025, 52(1): 19-22. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||