[1] |
李宾, 吝欢欢, 韩飞飞, 等. 卵巢癌中PARP抑制剂的耐药机制及提高其敏感性的联合治疗策略[J]. 国际妇产科学杂志, 2023, 50(5):563-567. doi: 10.12280/gjfckx.20230329.
|
[2] |
Dias MP, Moser SC, Ganesan S, et al. Understanding and overcoming resistance to PARP inhibitors in cancer therapy[J]. Nat Rev Clin Oncol, 2021, 18(12):773-791. doi: 10.1038/s41571-021-00532-x.
pmid: 34285417
|
[3] |
Gonzalez D, Stenzinger A. Homologous recombination repair deficiency (HRD): From biology to clinical exploitation[J]. Genes Chromosomes Cancer, 2021, 60(5):299-302. doi: 10.1002/gcc.22939.
|
[4] |
Farmer H, McCabe N, Lord CJ, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy[J]. Nature, 2005, 434(7035):917-921. doi: 10.1038/nature03445.
|
[5] |
Fong PC, Boss DS, Yap TA, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers[J]. N Engl J Med, 2009, 361(2):123-134. doi: 10.1056/NEJMoa0900212.
|
[6] |
孔北华, 刘继红, 谢幸, 等. 卵巢癌PARP抑制剂临床应用指南(2022版)[J]. 现代妇产科进展, 2022, 31(8):561-572. doi: 10.13283/j.cnki.xdfckjz.2022.08.001.
|
[7] |
Tobalina L, Armenia J, Irving E, et al. A meta-analysis of reversion mutations in BRCA genes identifies signatures of DNA end-joining repair mechanisms driving therapy resistance[J]. Ann Oncol, 2021, 32(1):103-112. doi: 10.1016/j.annonc.2020.10.470.
pmid: 33091561
|
[8] |
Paes Dias M, Tripathi V, van der Heijden I, et al. Loss of nuclear DNA ligase Ⅲ reverts PARP inhibitor resistance in BRCA1/53BP1 double-deficient cells by exposing ssDNA gaps[J]. Mol Cell, 2021, 81(22):4692-4708.e9. doi: 10.1016/j.molcel.2021.09.005.
|
[9] |
Sahnane N, Carnevali I, Formenti G, et al. BRCA Methylation Testing Identifies a Subset of Ovarian Carcinomas without Germline Variants That Can Benefit from PARP Inhibitor[J]. Int J Mol Sci, 2020, 21(24):9708. doi: 10.3390/ijms21249708.
|
[10] |
Mizrahi AG, Hamad H, Gugenheim A, et al. Loss of Heterozygosity of BRCA1/2 as a Predictive Marker for Talazoparib Response[J]. Anticancer Res, 2022, 42(11):5257-5263. doi: 10.21873/anticanres.16032.
pmid: 36288893
|
[11] |
Vaidyanathan A, Sawers L, Gannon AL, et al. ABCB1 (MDR1) induction defines a common resistance mechanism in paclitaxel- and olaparib-resistant ovarian cancer cells[J]. Br J Cancer, 2016, 115(4):431-441. doi: 10.1038/bjc.2016.203.
|
[12] |
Pettitt SJ, Krastev DB, Brandsma I, et al. Genome-wide and high-density CRISPR-Cas9 screens identify point mutations in PARP1 causing PARP inhibitor resistance[J]. Nat Commun, 2018, 9(1):1849. doi: 10.1038/s41467-018-03917-2.
pmid: 29748565
|
[13] |
Gogola E, Duarte AA, de Ruiter JR, et al. Selective Loss of PARG Restores PARylation and Counteracts PARP Inhibitor-Mediated Synthetic Lethality[J]. Cancer Cell, 2018, 33(6):1078-1093.e12. doi: 10.1016/j.ccell.2018.05.008.
pmid: 29894693
|
[14] |
da Costa A, Chowdhury D, Shapiro GI, et al. Targeting replication stress in cancer therapy[J]. Nat Rev Drug Discov, 2023, 22(1):38-58. doi: 10.1038/s41573-022-00558-5.
|
[15] |
Meghani K, Fuchs W, Detappe A, et al. Multifaceted Impact of MicroRNA 493-5p on Genome-Stabilizing Pathways Induces Platinum and PARP Inhibitor Resistance in BRCA2-Mutated Carcinomas[J]. Cell Rep, 2018, 23(1):100-111. doi: 10.1016/j.celrep.2018.03.038.
pmid: 29617652
|
[16] |
Vescarelli E, Gerini G, Megiorni F, et al. MiR-200c sensitizes Olaparib-resistant ovarian cancer cells by targeting Neuropilin 1[J]. J Exp Clin Cancer Res, 2020, 39(1):3. doi: 10.1186/s13046-019-1490-7.
pmid: 31898520
|
[17] |
Gabbasov R, Benrubi ID, O'Brien SW, et al. Targeted blockade of HSP90 impairs DNA-damage response proteins and increases the sensitivity of ovarian carcinoma cells to PARP inhibition[J]. Cancer Biol Ther, 2019, 20(7):1035-1045. doi: 10.1080/15384047.2019.1595279.
pmid: 30929564
|
[18] |
Konstantinopoulos PA, Cheng SC, Supko JG, et al. Combined PARP and HSP90 inhibition: preclinical and Phase 1 evaluation in patients with advanced solid tumours[J]. Br J Cancer, 2022, 126(7):1027-1036. doi: 10.1038/s41416-021-01664-8.
|
[19] |
Lin S, Zhang L, Zhang X, et al. Synthesis of novel dual target inhibitors of PARP and HSP90 and their antitumor activities[J]. Bioorg Med Chem, 2020, 28(9):115434. doi: 10.1016/j.bmc.2020.115434.
|
[20] |
Burgess BT, Anderson AM, McCorkle JR, et al. Olaparib Combined with an ATR or Chk1 Inhibitor as a Treatment Strategy for Acquired Olaparib-Resistant BRCA1 Mutant Ovarian Cells[J]. Diagnostics (Basel), 2020, 10(2):121. doi: 10.3390/diagnostics10020121.
|
[21] |
Wethington SL, Shah PD, Martin L, et al. Combination ATR (ceralasertib) and PARP (olaparib) Inhibitor (CAPRI) Trial in Acquired PARP Inhibitor-Resistant Homologous Recombination-Deficient Ovarian Cancer[J]. Clin Cancer Res, 2023, 29(15):2800-2807. doi: 10.1158/1078-0432.CCR-22-2444.
|
[22] |
Westin SN, Coleman RL, Fellman BM, et al. EFFORT: Efficacy of adavosertib in PARP Resistance: A randomized two-arm non-comparative phase Ⅱ study of adavosertib with or without olaparib in women with PARP-resistant ovarian cancer[J]. J Clin Oncol, 2021, 39(15_suppl):5505. doi: 10.1200/JCO.2021.39.15_suppl.5505.
|
[23] |
Hong DS, Moore KN, Bendell JC, et al. Preclinical Evaluation and Phase Ⅰb Study of Prexasertib, a CHK1 Inhibitor, and Samotolisib (LY3023414), a Dual PI3K/mTOR Inhibitor[J]. Clin Cancer Res, 2021, 27(7):1864-1874. doi: 10.1158/1078-0432.CCR-20-3242.
|
[24] |
Bian C, Zhang C, Luo T, et al. NADP+ is an endogenous PARP inhibitor in DNA damage response and tumor suppression[J]. Nat Commun, 2019, 10(1):693. doi: 10.1038/s41467-019-08530-5.
|
[25] |
Abbotts R, Dellomo AJ, Rassool FV. Pharmacologic Induction of BRCAness in BRCA-Proficient Cancers: Expanding PARP Inhibitor Use[J]. Cancers(Basel), 2022, 14(11):2640. doi: 10.3390/cancers14112640.
|
[26] |
Sauriol A, Carmona E, Udaskin ML, et al. Inhibition of nicotinamide dinucleotide salvage pathway counters acquired and intrinsic poly(ADP-ribose) polymerase inhibitor resistance in high-grade serous ovarian cancer[J]. Sci Rep, 2023, 13(1):3334. doi: 10.1038/s41598-023-30081-5.
pmid: 36849518
|
[27] |
Gupta VG, Hirst J, Petersen S, et al. Entinostat, a selective HDAC1/2 inhibitor, potentiates the effects of olaparib in homologous recombination proficient ovarian cancer[J]. Gynecol Oncol, 2021, 162(1):163-172. doi: 10.1016/j.ygyno.2021.04.015.
pmid: 33867143
|
[28] |
Fang P, Madden JA, Neums L, et al. Olaparib-induced Adaptive Response Is Disrupted by FOXM1 Targeting that Enhances Sensitivity to PARP Inhibition[J]. Mol Cancer Res, 2018, 16(6):961-973. doi: 10.1158/1541-7786.MCR-17-0607.
pmid: 29545475
|
[29] |
Zhou J, Gelot C, Pantelidou C, et al. A first-in-class Polymerase Theta Inhibitor selectively targets Homologous-Recombination-Deficient Tumors[J]. Nat Cancer, 2021, 2(6):598-610. doi: 10.1038/s43018-021-00203-x.
|
[30] |
Tew WP, Lacchetti C, Kohn EC. Poly(ADP-Ribose) Polymerase Inhibitors in the Management of Ovarian Cancer: ASCO Guideline Rapid Recommendation Update[J]. J Clin Oncol, 2022, 40(33):3878-3881. doi: 10.1200/JCO.22.01934.
|
[31] |
Boussios S, Karihtala P, Moschetta M, et al. Combined Strategies with Poly (ADP-Ribose) Polymerase (PARP) Inhibitors for the Treatment of Ovarian Cancer: A Literature Review[J]. Diagnostics (Basel), 2019, 9(3):87. doi: 10.3390/diagnostics9030087.
|
[32] |
Lheureux S, Oaknin A, Garg S, et al. EVOLVE: A Multicenter Open-Label Single-Arm Clinical and Translational Phase ⅡTrial of Cediranib Plus Olaparib for Ovarian Cancer after PARP Inhibition Progression[J]. Clin Cancer Res, 2020, 26(16):4206-4215. doi: 10.1158/1078-0432.CCR-19-4121.
|
[33] |
Meng J, Peng J, Feng J, et al. Niraparib exhibits a synergistic anti-tumor effect with PD-L1 blockade by inducing an immune response in ovarian cancer[J]. J Transl Med, 2021, 19(1):415. doi: 10.1186/s12967-021-03073-0.
pmid: 34620163
|
[34] |
Yanaihara N, Yoshino Y, Noguchi D, et al. Paclitaxel sensitizes homologous recombination-proficient ovarian cancer cells to PARP inhibitor via the CDK1/BRCA1 pathway[J]. Gynecol Oncol, 2023, 168:83-91. doi: 10.1016/j.ygyno.2022.11.006.
|
[35] |
Gao J, Wang Z, Fu J, et al. Combination treatment with cisplatin, paclitaxel and olaparib has synergistic and dose reduction potential in ovarian cancer cells[J]. Exp Ther Med, 2021, 22(3):935. doi: 10.3892/etm.2021.10367.
pmid: 34335884
|
[36] |
俞晓雲, 李睿彦, 何玲玲, 等. 增强复发性上皮性卵巢癌放疗敏感性的相关因素[J]. 国际妇产科学杂志, 2021, 48(2):154-158. doi: 10.12280/gjfckx.20200534.
|
[37] |
Dong R, Ding T, Li Z. Update on poly(ADP-ribose) polymerase inhibitors resistance in ovarian cancer[J]. Front Pharmacol, 2023, 14:1164395. doi: 10.3389/fphar.2023.1164395.
|