[1] |
Dimitriadis E, Menkhorst E, Saito S, et al. Recurrent pregnancy loss[J]. Nat Rev Dis Primers, 2020, 6(1):98. doi: 10.1038/s41572-020-00228-z.
pmid: 33303732
|
[2] |
Quintero-Ronderos P, Laissue P. Genetic Variants Contributing to Early Recurrent Pregnancy Loss Etiology Identified by Sequencing Approaches[J]. Reprod Sci, 2020, 27(8):1541-1552. doi: 10.1007/s43032-020-00187-6.
pmid: 32430708
|
[3] |
Schumacher A, Sharkey DJ, Robertson SA, et al. Immune Cells at the Fetomaternal Interface: How the Microenvironment Modulates Immune Cells To Foster Fetal Development[J]. J Immunol, 2018, 201(2):325-334. doi: 10.4049/jimmunol.1800058.
pmid: 29987001
|
[4] |
Jia N, Li J. Noncoding RNAs in Unexplained Recurrent Spontaneous Abortions and Their Diagnostic Potential[J]. Dis Markers, 2019,2019:7090767. doi: 10.1155/2019/7090767.
|
[5] |
Li Y, Wang R, Wang M, et al. RNA Sequencing of Decidua Reveals Differentially Expressed Genes in Recurrent Pregnancy Loss[J]. Reprod Sci, 2021, 28(8):2261-2269. doi: 10.1007/s43032-021-00482-w.
pmid: 33625691
|
[6] |
Huang J, Qin H, Yang Y, et al. A comparison of transcriptomic profiles in endometrium during window of implantation between women with unexplained recurrent implantation failure and recurrent miscarriage[J]. Reproduction, 2017, 153(6):749-758. doi: 10.1530/REP-16-0574.
|
[7] |
Robbins SM, Thimm MA, Valle D, et al. Genetic diagnosis in first or second trimester pregnancy loss using exome sequencing: a systematic review of human essential genes[J]. J Assist Reprod Genet, 2019, 36(8):1539-1548. doi: 10.1007/s10815-019-01499-6.
|
[8] |
Fang Z, Yang Y, Xu Y, et al. LncRNA HULC Polymorphism Is Associated With Recurrent Spontaneous Abortion Susceptibility in the Southern Chinese Population[J]. Front Genet, 2019,10:918. doi: 10.3389/fgene.2019.00918.
|
[9] |
中华医学会妇产科学分会产科学组. 复发性流产诊治的专家共识[J]. 中华妇产科杂志, 2016, 51(1):3-9. doi: 10.3760/cma.j.issn.0529-567x.2016.01.002.
|
[10] |
Ander SE, Diamond MS, Coyne CB. Immune responses at the maternal-fetal interface[J]. Sci Immunol, 2019, 4(31):eaat6114. doi: 10.1126/sciimmunol.aat6114.
|
[11] |
Chen Y, Hu J. ATP6V1G3 Acts as a Key Gene in Recurrent Spontaneous Abortion: An Integrated Bioinformatics Analysis[J]. Med Sci Monit, 2020,26:e927537. doi: 10.12659/MSM.927537.
|
[12] |
Gu H, Li L, Du M, et al. Key Gene and Functional Pathways Identified in Unexplained Recurrent Spontaneous Abortion Using Targeted RNA Sequencing and Clinical Analysis[J]. Front Immunol, 2021,12:717832. doi: 10.3389/fimmu.2021.717832.
|
[13] |
Huang Y, Hao J, Liao Y, et al. Transcriptome sequencing identified the ceRNA network associated with recurrent spontaneous abortion[J]. BMC Med Genomics, 2021, 14(1):278. doi: 10.1186/s12920-021-01125-4.
pmid: 34814929
|
[14] |
Li T, Li X, Guo Y, et al. Distinct mRNA and long non-coding RNA expression profiles of decidual natural killer cells in patients with early missed abortion[J]. FASEB J, 2020, 34(11):14264-14286. doi: 10.1096/fj.202000621R.
|
[15] |
Koot YE, van Hooff SR, Boomsma CM, et al. An endometrial gene expression signature accurately predicts recurrent implantation failure after IVF[J]. Sci Rep, 2016,6:19411. doi: 10.1038/srep19411.
|
[16] |
张若鹏. 高通量基因表达谱测序差异与体外受精-胚胎移植结局相关性研究[D]. 广州: 南方医科大学, 2016.
|
[17] |
Yu H, Shen Y, Ge Q, et al. Quantification of maternal serum cell-free fetal DNA in early-onset preeclampsia[J]. Int J Mol Sci, 2013, 14(4):7571-7582. doi: 10.3390/ijms14047571.
pmid: 23567271
|
[18] |
Poholek AC, Jankovic D, Villarino AV, et al. IL-10 induces a STAT3-dependent autoregulatory loop in TH2 cells that promotes Blimp-1 restriction of cell expansion via antagonism of STAT5 target genes[J]. Sci Immunol, 2016, 1(5):eaaf8612. doi: 10.1126/sciimmunol.aaf8612.
|
[19] |
吴荣荣, 张玉泉, 杨晓清. STAT家族在复发性自然流产中的研究进展[J]. 国际妇产科学杂志, 2017, 44(5):547-551. doi: 10.3969/j.issn.1674-1870.2017.05.016.
|
[20] |
Lewis RS, Noor SM, Fraser FW, et al. Regulation of embryonic hematopoiesis by a cytokine-inducible SH2 domain homolog in zebrafish[J]. J Immunol, 2014, 192(12):5739-5748. doi: 10.4049/jimmunol.1301376.
pmid: 24835394
|