[1] |
Roma-Rodrigues C, Mendes R, Baptista PV, et al. Targeting Tumor Microenvironment for Cancer Therapy[J]. Int J Mol Sci, 2019, 20(4):840. doi: 10.3390/ijms20040840.
|
[2] |
Akoto T, Saini S. Role of Exosomes in Prostate Cancer Metastasis[J]. Int J Mol Sci, 2021, 22(7):3528. doi: 10.3390/ijms22073528.
|
[3] |
Wang S, Ma F, Feng Y, et al. Role of exosomal miR-21 in the tumor microenvironment and osteosarcoma tumorigenesis and progression (Review)[J]. Int J Oncol, 2020, 56(5):1055-1063. doi: 10.3892/ijo.2020.4992.
|
[4] |
Yang E, Wang X, Gong Z, et al. Exosome-mediated metabolic reprogramming: the emerging role in tumor microenvironment remodeling and its influence on cancer progression[J]. Signal Transduct Target Ther, 2020, 5(1):242. doi: 10.1038/s41392-020-00359-5.
|
[5] |
Mashouri L, Yousefi H, Aref AR, et al. Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance[J]. Mol Cancer, 2019, 18(1):75. doi: 10.1186/s12943-019-0991-5.
pmid: 30940145
|
[6] |
Feng W, Dean DC, Hornicek FJ, et al. Exosomes promote pre-metastatic niche formation in ovarian cancer[J]. Mol Cancer, 2019, 18(1):124. doi: 10.1186/s12943-019-1049-4.
pmid: 31409361
|
[7] |
Lim D, Do Y, Kwon BS, et al. Angiogenesis and vasculogenic mimicry as therapeutic targets in ovarian cancer[J]. BMB Rep, 2020, 53(6):291-298. doi: 10.5483/BMBRep.2020.53.6.060.
pmid: 32438972
|
[8] |
Dhani NC, Oza AM. Targeting Angiogenesis: Taming the Medusa of Ovarian Cancer[J]. Hematol Oncol Clin North Am, 2018, 32(6):1041-1055. doi: 10.1016/j.hoc.2018.07.008.
|
[9] |
Wu B, Zhang L, Yu Y, et al. miR-6086 inhibits ovarian cancer angiogenesis by downregulating the OC2/VEGFA/EGFL6 axis[J]. Cell Death Dis, 2020, 11(5):345. doi: 10.1038/s41419-020-2501-5.
pmid: 32393810
|
[10] |
Gavalas NG, Liontos M, Trachana SP, et al. Angiogenesis-related pathways in the pathogenesis of ovarian cancer[J]. Int J Mol Sci, 2013, 14(8):15885-15909. doi: 10.3390/ijms140815885.
pmid: 23903048
|
[11] |
Fanale D, Corsini LR, Bono M, et al. Clinical relevance of exosome-derived microRNAs in Ovarian Cancer: Looking for new tumor biological fingerprints[J]. Crit Rev Oncol Hematol, 2024,193:104220. doi: 10.1016/j.critrevonc.2023.104220.
|
[12] |
Ludwig N, Whiteside TL. Potential roles of tumor-derived exosomes in angiogenesis[J]. Expert Opin Ther Targets, 2018, 22(5):409-417. doi: 10.1080/14728222.2018.1464141.
|
[13] |
Olejarz W, Kubiak-Tomaszewska G, Chrzanowska A, et al. Exosomes in Angiogenesis and Anti-angiogenic Therapy in Cancers[J]. Int J Mol Sci, 2020, 21(16):5840. doi: 10.3390/ijms21165840.
|
[14] |
He L, Zhu W, Chen Q, et al. Ovarian cancer cell-secreted exosomal miR-205 promotes metastasis by inducing angiogenesis[J]. Theranostics, 2019, 9(26):8206-8220. doi: 10.7150/thno.37455.
pmid: 31754391
|
[15] |
Zhao Z, Shuang T, Gao Y, et al. Targeted delivery of exosomal miR-484 reprograms tumor vasculature for chemotherapy sensitization[J]. Cancer Lett, 2022, 530:45-58. doi: 10.1016/j.canlet.2022.01.011.
pmid: 35051533
|
[16] |
Masoumi-Dehghi S, Babashah S, Sadeghizadeh M. microRNA-141-3p-containing small extracellular vesicles derived from epithelial ovarian cancer cells promote endothelial cell angiogenesis through activating the JAK/STAT3 and NF-κB signaling pathways[J]. J Cell Commun Signal, 2020, 14(2):233-244. doi: 10.1007/s12079-020-00548-5.
pmid: 32034654
|
[17] |
Li Z, Yan-Qing W, Xiao Y, et al. Exosomes secreted by chemoresistant ovarian cancer cells promote angiogenesis[J]. J Ovarian Res, 2021, 14(1):7. doi: 10.1186/s13048-020-00758-w.
pmid: 33413589
|
[18] |
Qiu JJ, Lin XJ, Tang XY, et al. Exosomal Metastasis-Associated Lung Adenocarcinoma Transcript 1 Promotes Angiogenesis and Predicts Poor Prognosis in Epithelial Ovarian Cancer[J]. Int J Biol Sci, 2018, 14(14):1960-1973. doi: 10.7150/ijbs.28048.
|
[19] |
Yuan D, Guo T, Zhu D, et al. Exosomal lncRNA ATB Derived from Ovarian Cancer Cells Promotes Angiogenesis via Regulating miR-204-3p/TGFβR2 Axis[J]. Cancer Manag Res, 2022, 14:327-337. doi: 10.2147/CMAR.S330368.
pmid: 35115831
|
[20] |
Wang M, Fu L, Xu Y, et al. A comprehensive overview of exosome lncRNAs: Emerging biomarkers and potential therapeutics in gynecological cancers[J]. Front Oncol, 2023,13:1138142. doi: 10.3389/fonc.2023.1138142.
|
[21] |
Wang X, Huang J, Chen W, et al. The updated role of exosomal proteins in the diagnosis, prognosis, and treatment of cancer[J]. Exp Mol Med, 2022, 54(9):1390-1400. doi: 10.1038/s12276-022-00855-4.
|
[22] |
Zhang X, Sheng Y, Li B, et al. Ovarian cancer derived PKR1 positive exosomes promote angiogenesis by promoting migration and tube formation in vitro[J]. Cell Biochem Funct, 2021, 39(2):308-316. doi: 10.1002/cbf.3583.
|
[23] |
Yang C, Kim HS, Song G, et al. The potential role of exosomes derived from ovarian cancer cells for diagnostic and therapeutic approaches[J]. J Cell Physiol, 2019, 234(12):21493-21503. doi: 10.1002/jcp.28905.
pmid: 31144314
|
[24] |
Yunusova N, Dzhugashvili E, Yalovaya A, et al. Comparative Analysis of Tumor-Associated microRNAs and Tetraspanines from Exosomes of Plasma and Ascitic Fluids of Ovarian Cancer Patients[J]. Int J Mol Sci, 2022, 24(1):464. doi: 10.3390/ijms24010464.
|
[25] |
Ribeiro MF, Zhu H, Millard RW, et al. Exosomes Function in Pro- and Anti-Angiogenesis[J]. Curr Angiogenes, 2013, 2(1):54-59. doi: 10.2174/22115528113020020001.
|
[26] |
Salem KZ, Moschetta M, Sacco A, et al. Exosomes in Tumor Angiogenesis[J]. Methods Mol Biol, 2016,1464:25-34. doi: 10.1007/978-1-4939-3999-2_3.
|
[27] |
Vera N, Acuña-Gallardo S, Grünenwald F, et al. Small Extracellular Vesicles Released from Ovarian Cancer Spheroids in Response to Cisplatin Promote the Pro-Tumorigenic Activity of Mesenchymal Stem Cells[J]. Int J Mol Sci, 2019, 20(20):4972. doi: 10.3390/ijms20204972.
|
[28] |
Whiteside TL. Exosome and mesenchymal stem cell cross-talk in the tumor microenvironment[J]. Semin Immunol, 2018, 35:69-79. doi: 10.1016/j.smim.2017.12.003.
pmid: 29289420
|
[29] |
Giusti I, Di Francesco M, Poppa G, et al. Tumor-Derived Extracellular Vesicles Activate Normal Human Fibroblasts to a Cancer-Associated Fibroblast-Like Phenotype, Sustaining a Pro-Tumorigenic Microenvironment[J]. Front Oncol, 2022,12:839880. doi: 10.3389/fonc.2022.839880.
|
[30] |
Kazemi NY, Gendrot B, Berishvili E, et al. The Role and Clinical Interest of Extracellular Vesicles in Pregnancy and Ovarian Cancer[J]. Biomedicines, 2021, 9(9):1257. doi: 10.3390/biomedicines9091257.
|
[31] |
Xu WX, Wang DD, Zhao ZQ, et al. Exosomal microRNAs shuttling between tumor cells and macrophages: cellular interactions and novel therapeutic strategies[J]. Cancer Cell Int, 2022, 22(1):190. doi: 10.1186/s12935-022-02594-y.
|
[32] |
Mei C, Gong W, Wang X, et al. Anti-angiogenic therapy in ovarian cancer: Current understandings and prospects of precision medicine[J]. Front Pharmacol, 2023,14:1147717. doi: 10.3389/fphar.2023.1147717.
|
[33] |
Ye H, Wang RY, Yu XZ, et al. Exosomal circNFIX promotes angiogenesis in ovarian cancer via miR-518a-3p/TRIM44 axis[J]. Kaohsiung J Med Sci, 2023, 39(1):26-39. doi: 10.1002/kjm2.12615.
|
[34] |
De A, Powers B, De A, et al. Emblica officinalis extract downregulates pro-angiogenic molecules via upregulation of cellular and exosomal miR-375 in human ovarian cancer cells[J]. Oncotarget, 2016, 7(21):31484-31500. doi: 10.18632/oncotarget.8966.
pmid: 27129171
|
[35] |
Shimizu A, Sawada K, Kimura T. Pathophysiological Role and Potential Therapeutic Exploitation of Exosomes in Ovarian Cancer[J]. Cells, 2020, 9(4):814. doi: 10.3390/cells9040814.
|
[36] |
Wang J, Wang C, Li Y, et al. Potential of peptide-engineered exosomes with overexpressed miR-92b-3p in anti-angiogenic therapy of ovarian cancer[J]. Clin Transl Med, 2021, 11(5):e425. doi: 10.1002/ctm2.425.
pmid: 34047469
|