[1] |
Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3):229-263. doi: 10.3322/caac.21834.
|
[2] |
Tewari KS. Cervical Cancer[J]. N Engl J Med, 2025, 392(1):56-71. doi: 10.1056/NEJMra2404457.
|
[3] |
Li XM, Zhao ZY, Yu X, et al. Exploiting E3 ubiquitin ligases to reeducate the tumor microenvironment for cancer therapy[J]. Exp Hematol Oncol, 2023, 12(1):34. doi: 10.1186/s40164-023-00394-2.
|
[4] |
Sampson C, Wang Q, Otkur W, et al. The roles of E3 ubiquitin ligases in cancer progression and targeted therapy[J]. Clin Transl Med, 2023, 13(3):e1204. doi: 10.1002/ctm2.1204.
pmid: 36881608
|
[5] |
Gao L, Zhang W, Shi XH, et al. The mechanism of linear ubiquitination in regulating cell death and correlative diseases[J]. Cell Death Dis, 2023, 14(10):659. doi: 10.1038/s41419-023-06183-3.
pmid: 37813853
|
[6] |
Morreale FE, Walden H. Types of Ubiquitin Ligases[J]. Cell, 2016, 165(1):248-248.e1. doi: 10.1016/j.cell.2016.03.003.
pmid: 27015313
|
[7] |
Dewson G, Eichhorn P, Komander D. Deubiquitinases in cancer[J]. Nat Rev Cancer, 2023, 23(12):842-862. doi: 10.1038/s41568-023-00633-y.
pmid: 37935888
|
[8] |
Spano D, Catara G. Targeting the Ubiquitin-Proteasome System and Recent Advances in Cancer Therapy[J]. Cells, 2023, 13(1):29. doi: 10.3390/cells13010029.
|
[9] |
Zou Q, Liu M, Liu K, et al. E3 ubiquitin ligases in cancer stem cells: key regulators of cancer hallmarks and novel therapeutic opportunities[J]. Cell Oncol(Dordr), 2023, 46(3):545-570. doi: 10.1007/s13402-023-00777-x.
|
[10] |
Sun X, Ye G, Li J, et al. The tumor suppressor Parkin exerts anticancer effects through regulating mitochondrial GAPDH activity[J]. Oncogene, 2024, 43(44):3215-3226. doi: 10.1038/s41388-024-03157-3.
pmid: 39285229
|
[11] |
Wang S, Qiao X, Cui Y, et al. NCAPH, ubiquitinated by TRIM21, promotes cell proliferation by inhibiting autophagy of cervical cancer through AKT/mTOR dependent signaling[J]. Cell Death Dis, 2024, 15(8):565. doi: 10.1038/s41419-024-06932-y.
pmid: 39103348
|
[12] |
Lin M, Zhang J, Bouamar H, et al. Fbxo22 promotes cervical cancer progression via targeting p57(Kip2) for ubiquitination and degradation[J]. Cell Death Dis, 2022, 13(9):805. doi: 10.1038/s41419-022-05248-z.
|
[13] |
Cai H, Zhang F, Li Z. Gfi-1 promotes proliferation of human cervical carcinoma via targeting of FBW7 ubiquitin ligase expression[J]. Cancer Manag Res, 2018, 10:2849-2857. doi: 10.2147/CMAR.S161130.
pmid: 30197537
|
[14] |
Fontana R, Mestre-Farrera A, Yang J. Update on Epithelial-Mesenchymal Plasticity in Cancer Progression[J]. Annu Rev Pathol, 2024,19:133-156. doi: 10.1146/annurev-pathmechdis-051222-122423.
|
[15] |
Wang X, De Geyter C, Jia Z, et al. HECTD1 regulates the expression of SNAIL: Implications for epithelial-mesenchymal transition[J]. Int J Oncol, 2020, 56(5):1186-1198. doi: 10.3892/ijo.2020.5002.
|
[16] |
Li S, Shi L, Wang Y, et al. FBXO22 inhibits proliferation and metastasis of cervical cancer cells by mediating ubiquitination-dependent degradation of GAK[J]. Exp Cell Res, 2023, 430(1):113719. doi: 10.1016/j.yexcr.2023.113719.
|
[17] |
Pang K, Lee J, Kim J, et al. Degradation of DRAK1 by CUL3/SPOP E3 Ubiquitin ligase promotes tumor growth of paclitaxel-resistant cervical cancer cells[J]. Cell Death Dis, 2022, 13(2):169. doi: 10.1038/s41419-022-04619-w.
pmid: 35194034
|
[18] |
Atri Y, Bharti H, Sahani N, et al. CUL4A silencing attenuates cervical carcinogenesis and improves Cisplatin sensitivity[J]. Mol Cell Biochem, 2024, 479(5):1041-1058. doi: 10.1007/s11010-023-04776-2.
|
[19] |
Song Q, Wen J, Li W, et al. HSP90 promotes radioresistance of cervical cancer cells via reducing FBXO6-mediated CD147 polyubiquitination[J]. Cancer Sci, 2022, 113(4):1463-1474. doi: 10.1111/cas.15269.
|
[20] |
Grau-Bejar JF, Garcia-Duran C, Garcia-Illescas D, et al. Advances in immunotherapy for cervical cancer[J]. Ther Adv Med Oncol, 2023,15:17588359231163836. doi: 10.1177/17588359231163836.
|
[21] |
Niebler M, Qian X, Höfler D, et al. Post-translational control of IL-1β via the human papillomavirus type 16 E6 oncoprotein: a novel mechanism of innate immune escape mediated by the E3-ubiquitin ligase E6-AP and p53[J]. PLoS Pathog, 2013, 9(8):e1003536. doi: 10.1371/journal.ppat.1003536.
|
[22] |
Gazzaroli G, Angeli A, Giacomini A, et al. Proteasome inhibitors as anticancer agents[J]. Expert Opin Ther Pat, 2023, 33(11):775-796. doi: 10.1080/13543776.2023.2272648.
|
[23] |
Bhattacharjee R, Das SS, Biswal SS, et al. Mechanistic role of HPV-associated early proteins in cervical cancer: Molecular pathways and targeted therapeutic strategies[J]. Crit Rev Oncol Hematol, 2022,174:103675. doi: 10.1016/j.critrevonc.2022.103675.
|
[24] |
Makgoo L, Mosebi S, Mbita Z. Molecular Mechanisms of HIV Protease Inhibitors Against HPV-Associated Cervical Cancer: Restoration of TP53 Tumour Suppressor Activities[J]. Front Mol Biosci, 2022,9:875208. doi: 10.3389/fmolb.2022.875208.
|
[25] |
Zhang Q, Song J, Cao L, et al. RNF113A targeted by miR-197 promotes proliferation and inhibits autophagy via CXCR4/CXCL12/AKT/ERK/Beclin1 axis in cervical cancer[J]. Exp Cell Res, 2023, 428(1):113632. doi: 10.1016/j.yexcr.2023.113632.
|
[26] |
Kenny S, Iyer S, Gabel CA, et al. Structure of E6AP in complex with HPV16-E6 and p53 reveals a novel ordered domain important for E3 ligase activation[J]. Structure, 2025, 33(3):504-516.e4. doi: 10.1016/j.str.2024.12.013.
|
[27] |
Patiño-Morales CC, Soto-Reyes E, Arechaga-Ocampo E, et al. Curcumin stabilizes p53 by interaction with NAD(P)H:quinone oxidoreductase 1 in tumor-derived cell lines[J]. Redox Biol, 2020,28:101320. doi: 10.1016/j.redox.2019.101320.
|
[28] |
Vats A, Braga L, Kavcic N, et al. Regulation of human papillomavirus E6 oncoprotein function via a novel ubiquitin ligase FBXO4[J]. mBio, 2025, 16(2):e0278324. doi: 10.1128/mbio.02783-24.
|
[29] |
Peuget S, Zhou X, Selivanova G. Translating p53-based therapies for cancer into the clinic[J]. Nat Rev Cancer, 2024, 24(3):192-215. doi: 10.1038/s41568-023-00658-3.
|
[30] |
Zhang J, Yu G, Yang Y, et al. A small-molecule inhibitor of MDMX suppresses cervical cancer cells via the inhibition of E6-E6AP-p53 axis[J]. Pharmacol Res, 2022,177:106128. doi: 10.1016/j.phrs.2022.106128.
|
[31] |
Sobierajski T, Małolepsza J, Pichlak M, et al. The impact of E3 ligase choice on PROTAC effectiveness in protein kinase degradation[J]. Drug Discov Today, 2024, 29(7):104032. doi: 10.1016/j.drudis.2024.104032.
|
[32] |
Sakamoto KM, Kim KB, Kumagai A, et al. Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation[J]. Proc Natl Acad Sci U S A, 2001, 98(15):8554-8559. doi: 10.1073/pnas.141230798.
|
[33] |
Sakamoto KM, Kim KB, Verma R, et al. Development of Protacs to target cancer-promoting proteins for ubiquitination and degradation[J]. Mol Cell Proteomics, 2003, 2(12):1350-1358. doi: 10.1074/mcp.T300009-MCP200.
pmid: 14525958
|
[34] |
Shi YY, Dong DR, Fan G, et al. A cyclic peptide-based PROTAC induces intracellular degradation of palmitoyltransferase and potently decreases PD-L1 expression in human cervical cancer cells[J]. Front Immunol, 2023,14:1237964. doi: 10.3389/fimmu.2023.1237964.
|
[35] |
Smalley TB, Nicolaci A, Tran KC, et al. Targeted degradation of the HPV oncoprotein E6 reduces tumor burden in cervical cancer[J]. bioRxiv, 2024:2024.10.17.618959. doi: 10.1101/2024.10.17.618959.
|
[36] |
Yao Y, Wu M, Wang Y, et al. An Oral PROTAC Targeting HPK1 Degradation Potentiates Anti-Solid Tumor Immunity[J]. Adv Mater, 2025, 37(3):e2411454. doi: 10.1002/adma.202411454.
|
[37] |
Liu Y, Bai J, Li D, et al. Routes to molecular glue degrader discovery[J]. Trends Biochem Sci, 2025, 50(2):134-142. doi: 10.1016/j.tibs.2024.12.006.
pmid: 39753433
|
[38] |
Lu P, Cheng Y, Xue L, et al. Selective degradation of multimeric proteins by TRIM21-based molecular glue and PROTAC degraders[J]. Cell, 2024, 187(25):7126-7142.e20. doi: 10.1016/j.cell.2024.10.015.
pmid: 39488207
|
[39] |
Zhang D, Lin P, Lin J. Molecular glues targeting GSPT1 in cancers: A potent therapy[J]. Bioorg Chem, 2024,143:107000. doi: 10.1016/j.bioorg.2023.107000.
|