国际妇产科学杂志 ›› 2025, Vol. 52 ›› Issue (3): 331-336.doi: 10.12280/gjfckx.20250141
收稿日期:
2025-02-17
出版日期:
2025-06-15
发布日期:
2025-06-19
通讯作者:
闫丽隽
E-mail:ylj7576@sina.com
作者简介:
△审校者
基金资助:
Received:
2025-02-17
Published:
2025-06-15
Online:
2025-06-19
Contact:
YAN Li-jun
E-mail:ylj7576@sina.com
摘要:
卵巢癌是常见的妇科恶性肿瘤,其治疗面临铂类耐药和多腺苷二磷酸核糖聚合酶抑制剂[poly (ADP-ribose) polymerase inhibitor,PARPi]耐药的双重挑战。因此,如何克服其耐药性成为研究热点。卵巢癌耐药与DNA损伤应答关键基因发生逆转突变密切相关,而共济失调毛细血管扩张突变和Rad3相关蛋白(ataxia telangiectasia mutated and Rad3-related protein,ATR)是细胞内重要的蛋白激酶,在细胞周期调控、DNA损伤修复等多个生理过程中发挥关键作用。研究发现,ATR高表达促进卵巢癌细胞的存活,增加了其对化疗药物的耐受性。综述ATR的经典生物学功能,探讨ATR在卵巢癌发生、发展中的作用,介绍以ATR为靶点的卵巢癌治疗策略,以期为卵巢癌的个体化治疗提供指导,进一步改善卵巢癌患者的预后。
冯晓宇, 闫丽隽. 共济失调毛细血管扩张突变和Rad3相关蛋白在卵巢癌发生发展及治疗中的应用[J]. 国际妇产科学杂志, 2025, 52(3): 331-336.
FENG Xiao-yu, YAN Li-jun. The Application of Ataxia Telangiectasia Mutated and Rad3-Related Protein in the Pathogenesis, Development and Treatment of Ovarian Cancer[J]. Journal of International Obstetrics and Gynecology, 2025, 52(3): 331-336.
[1] | Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3):229-263. doi: 10.3322/caac.21834. |
[2] |
González-Martín A, Harter P, Leary A, et al. Newly diagnosed and relapsed epithelial ovarian cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up[J]. Ann Oncol, 2023, 34(10):833-848. doi: 10.1016/j.annonc.2023.07.011.
pmid: 37597580 |
[3] | Burdett NL, Willis MO, Alsop K, et al. Multiomic analysis of homologous recombination-deficient end-stage high-grade serous ovarian cancer[J]. Nat Genet, 2023, 55(3):437-450. doi: 10.1038/s41588-023-01320-2. |
[4] | Marth C, Abreu MH, Andersen KK, et al. Real-life data on treatment and outcomes in advanced ovarian cancer: An observational, multinational cohort study (RESPONSE trial)[J]. Cancer, 2022, 128(16):3080-3089. doi: 10.1002/cncr.34350. |
[5] | Kulkarni S, Gajjar K, Madhusudan S. Poly (ADP-ribose) polymerase inhibitor therapy and mechanisms of resistance in epithelial ovarian cancer[J]. Front Oncol, 2024,14:1414112. doi: 10.3389/fonc.2024.1414112. |
[6] |
Ngoi N, Pilié PG, McGrail DJ, et al. Targeting ATR in patients with cancer[J]. Nat Rev Clin Oncol, 2024, 21(4):278-293. doi: 10.1038/s41571-024-00863-5.
pmid: 38378898 |
[7] | Xu J, Bradley N, He Y. Structure and function of the apical PIKKs in double-strand break repair[J]. Curr Opin Struct Biol, 2023,82:102651. doi: 10.1016/j.sbi.2023.102651. |
[8] | Joo YK, Ramirez C, Kabeche L. A TRilogy of ATR′s Non-Canonical Roles Throughout the Cell Cycle and Its Relation to Cancer[J]. Cancers(Basel), 2024, 16(20):3536. doi: 10.3390/cancers16203536. |
[9] | Lin Y, Li J, Zhao H, et al. APE1 recruits ATRIP to ssDNA in an RPA-dependent and -independent manner to promote the ATR DNA damage response[J]. Elife, 2023,12:e82324. doi: 10.7554/eLife.82324. |
[10] |
Bouberhan S, Bar-Peled L, Matoba Y, et al. The evolving role of DNA damage response in overcoming therapeutic resistance in ovarian cancer[J]. Cancer Drug Resist, 2023, 6(2):345-357. doi: 10.20517/cdr.2022.146.
pmid: 37457127 |
[11] |
Blackford AN, Jackson SP. ATM, ATR, and DNA-PK: The Trinity at the Heart of the DNA Damage Response[J]. Mol Cell, 2017, 66(6):801-817. doi: 10.1016/j.molcel.2017.05.015.
pmid: 28622525 |
[12] |
Haahr P, Hoffmann S, Tollenaere MA, et al. Activation of the ATR kinase by the RPA-binding protein ETAA1[J]. Nat Cell Biol, 2016, 18(11):1196-1207. doi: 10.1038/ncb3422.
pmid: 27723717 |
[13] |
Saldivar JC, Hamperl S, Bocek MJ, et al. An intrinsic S/G(2) checkpoint enforced by ATR[J]. Science, 2018, 361(6404):806-810. doi: 10.1126/science.aap9346.
pmid: 30139873 |
[14] | Cimprich KA, Cortez D. ATR: an essential regulator of genome integrity[J]. Nat Rev Mol Cell Biol, 2008, 9(8):616-627. doi: 10.1038/nrm2450. |
[15] |
Wang Q, Bode AM, Zhang T. Targeting CDK1 in cancer: mechanisms and implications[J]. NPJ Precis Oncol, 2023, 7(1):58. doi: 10.1038/s41698-023-00407-7.
pmid: 37311884 |
[16] | Cybulla E, Vindigni A. Leveraging the replication stress response to optimize cancer therapy[J]. Nat Rev Cancer, 2023, 23(1):6-24. doi: 10.1038/s41568-022-00518-6. |
[17] |
Shi Q, Shen LY, Dong B, et al. The identification of the ATR inhibitor VE-822 as a therapeutic strategy for enhancing cisplatin chemosensitivity in esophageal squamous cell carcinoma[J]. Cancer Lett, 2018, 432:56-68. doi: 10.1016/j.canlet.2018.06.010.
pmid: 29890208 |
[18] |
Neeb A, Herranz N, Arce-Gallego S, et al. Advanced Prostate Cancer with ATM Loss: PARP and ATR Inhibitors[J]. Eur Urol, 2021, 79(2):200-211. doi: 10.1016/j.eururo.2020.10.029.
pmid: 33176972 |
[19] | Yap TA, Tan D, Terbuch A, et al. First-in-Human Trial of the Oral Ataxia Telangiectasia and RAD3-Related (ATR) Inhibitor BAY 1895344 in Patients with Advanced Solid Tumors[J]. Cancer Discov, 2021, 11(1):80-91. doi: 10.1158/2159-8290.CD-20-0868. |
[20] | Feng W, Dean DC, Hornicek FJ, et al. ATR and p-ATR are emerging prognostic biomarkers and DNA damage response targets in ovarian cancer[J]. Ther Adv Med Oncol, 2020,12:1758835920982853. doi: 10.1177/1758835920982853. |
[21] | Choi W, Lee ES. Therapeutic Targeting of DNA Damage Response in Cancer[J]. Int J Mol Sci, 2022, 23(3):1701. doi: 10.3390/ijms23031701. |
[22] |
Murga M, Campaner S, Lopez-Contreras AJ, et al. Exploiting oncogene-induced replicative stress for the selective killing of Myc-driven tumors[J]. Nat Struct Mol Biol, 2011, 18(12):1331-1335. doi: 10.1038/nsmb.2189.
pmid: 22120667 |
[23] |
Ferrao PT, Bukczynska EP, Johnstone RW, et al. Efficacy of CHK inhibitors as single agents in MYC-driven lymphoma cells[J]. Oncogene, 2012, 31(13):1661-1672. doi: 10.1038/onc.2011.358.
pmid: 21841818 |
[24] | 李慰, 翁立斌, 黄慧. ATR/CHK1通路在卵巢上皮癌发生发展中的作用机制研究[J]. 中华内分泌外科杂志, 2021, 15(6):612-617. doi: 10.3760/cma.j.cn.115807-20201109-00342. |
[25] | Bradbury A, Zenke FT, Curtin NJ, et al. The Role of ATR Inhibitors in Ovarian Cancer: Investigating Predictive Biomarkers of Response[J]. Cells, 2022, 11(15):2361. doi: 10.3390/cells11152361. |
[26] | Zhang H, Xu J, Long Y, et al. Unraveling the Guardian: p53′s Multifaceted Role in the DNA Damage Response and Tumor Treatment Strategies[J]. Int J Mol Sci, 2024, 25(23):12928. doi: 10.3390/ijms252312928. |
[27] | Chiang YC, Lin PH, Lu TP, et al. A DNA Damage Response Gene Panel for Different Histologic Types of Epithelial Ovarian Carcinomas and Their Outcomes[J]. Biomedicines, 2021, 9(10):1384. doi: 10.3390/biomedicines9101384. |
[28] | Walker T, Faraahi ZF, Price MJ, et al. The DNA damage response in advanced ovarian cancer: functional analysis combined with machine learning identifies signatures that correlate with chemotherapy sensitivity and patient outcome[J]. Br J Cancer, 2023, 128(9):1765-1776. doi: 10.1038/s41416-023-02168-3. |
[29] |
da Costa A, Baiocchi G. Genomic profiling of platinum-resistant ovarian cancer: The road into druggable targets[J]. Semin Cancer Biol, 2021, 77:29-41. doi: 10.1016/j.semcancer.2020.10.016.
pmid: 33161141 |
[30] | Wang Y, Li N, Ren Y, et al. Association of BRCA1/2 mutations with prognosis and surgical cytoreduction outcomes in ovarian cancer patients: An updated meta-analysis[J]. J Obstet Gynaecol Res, 2022, 48(9):2270-2284. doi: 10.1111/jog.15326. |
[31] | Vergote I, González-Martín A, Ray-Coquard I, et al. European experts consensus: BRCA/homologous recombination deficiency testing in first-line ovarian cancer[J]. Ann Oncol, 2022, 33(3):276-287. doi: 10.1016/j.annonc.2021.11.013. |
[32] | Ovejero-Sánchez M, González-Sarmiento R, Herrero AB. DNA Damage Response Alterations in Ovarian Cancer: From Molecular Mechanisms to Therapeutic Opportunities[J]. Cancers(Basel), 2023, 15(2):448. doi: 10.3390/cancers15020448. |
[33] | Hur J, Ghosh M, Kim TH, et al. Synergism of AZD6738, an ATR Inhibitor, in Combination with Belotecan, a Camptothecin Analogue, in Chemotherapy-Resistant Ovarian Cancer[J]. Int J Mol Sci, 2021, 22(3):1223. doi: 10.3390/ijms22031223. |
[34] | König P, Eichhorn JM, Suparman E, et al. SLFN11 and ATR as targets for overcoming cisplatin resistance in ovarian cancer cells[J]. Biochim Biophys Acta Mol Basis Dis, 2024, 1870(8): 167448. doi: 10.1016/j.bbadis.2024.167448. |
[35] | Shapiro GI, Wesolowski R, Devoe C, et al. Phase 1 study of the ATR inhibitor berzosertib in combination with cisplatin in patients with advanced solid tumours[J]. Br J Cancer, 2021, 125(4):520-527. doi: 10.1038/s41416-021-01406-w. |
[36] |
Konstantinopoulos PA, Cheng SC, Wahner Hendrickson AE, et al. Berzosertib plus gemcitabine versus gemcitabine alone in platinum-resistant high-grade serous ovarian cancer: a multicentre, open-label, randomised, phase 2 trial[J]. Lancet Oncol, 2020, 21(7):957-968. doi: 10.1016/S1470-2045(20)30180-7.
pmid: 32553118 |
[37] | Konstantinopoulos PA, Cheng SC, Lee EK, et al. Randomized Phase II Study of Gemcitabine With or Without ATR Inhibitor Berzosertib in Platinum-Resistant Ovarian Cancer: Final Overall Survival and Biomarker Analyses[J]. JCO Precis Oncol, 2024,8:e2300635. doi: 10.1200/PO.23.00635. |
[38] |
Huntoon CJ, Flatten KS, Wahner Hendrickson AE, et al. ATR inhibition broadly sensitizes ovarian cancer cells to chemotherapy independent of BRCA status[J]. Cancer Res, 2013, 73(12):3683-3691. doi: 10.1158/0008-5472.CAN-13-0110.
pmid: 23548269 |
[39] | Gralewska P, Biegała Ł, Gajek A, et al. Olaparib Combined with DDR Inhibitors Effectively Prevents EMT and Affects miRNA Regulation in TP53-Mutated Epithelial Ovarian Cancer Cell Lines[J]. Int J Mol Sci, 2025, 26(2):693. doi: 10.3390/ijms26020693. |
[40] | Biegała Ł, Statkiewicz M, Gajek A, et al. Molecular mechanisms restoring olaparib efficacy through ATR/CHK1 pathway inhibition in olaparib-resistant BRCA1/2(MUT) ovarian cancer models[J]. Biochim Biophys Acta Mol Basis Dis, 2025, 1871(2):167574. doi: 10.1016/j.bbadis.2024.167574. |
[41] |
Wethington SL, Shah PD, Martin L, et al. Combination ATR (ceralasertib) and PARP (olaparib) Inhibitor (CAPRI) Trial in Acquired PARP Inhibitor-Resistant Homologous Recombination-Deficient Ovarian Cancer[J]. Clin Cancer Res, 2023, 29(15):2800-2807. doi: 10.1158/1078-0432.CCR-22-2444.
pmid: 37097611 |
[42] |
Yap TA, Fontana E, Lee EK, et al. Camonsertib in DNA damage response-deficient advanced solid tumors: phase 1 trial results[J]. Nat Med, 2023, 29(6):1400-1411. doi: 10.1038/s41591-023-02399-0.
pmid: 37277454 |
[43] | Yap TA, Plummer ER, Tolcher AW, et al. A phase I study of highly potent oral ATR inhibitor (ATRi) tuvusertib plus oral PARP inhibitor (PARPi) niraparib in patients with solid tumors[J]. J Clin Oncol, 2024, 42(16 Suppl):3018. doi: 10.1200/JCO.2024.42.16_suppl.3018. |
[44] | Roulston A, Zimmermann M, Papp R, et al. RP-3500: A Novel, Potent, and Selective ATR Inhibitor that is Effective in Preclinical Models as a Monotherapy and in Combination with PARP Inhibitors[J]. Mol Cancer Ther, 2022, 21(2):245-256. doi: 10.1158/1535-7163.MCT-21-0615. |
[45] | Burris HA, Berlin J, Arkenau T, et al. A phase I study of ATR inhibitor gartisertib (M4344) as a single agent and in combination with carboplatin in patients with advanced solid tumours[J]. Br J Cancer, 2024, 130(7):1131-1140. doi: 10.1038/s41416-023-02436-2. |
[1] | 严莹, 杨洋, 钟华, 梁炎春. 地诺孕素治疗子宫腺肌病相关性疼痛的研究进展[J]. 国际妇产科学杂志, 2025, 52(3): 246-251. |
[2] | 李飞艳, 朱从心, 李咏, 孙丽, 刘瑜. LNG-IUS固定术治疗子宫腺肌病期间发生大出血致重度贫血一例[J]. 国际妇产科学杂志, 2025, 52(3): 271-274. |
[3] | 毛逍, 曲冬颖. 妊娠合并心脏病母婴风险评估及管理的研究进展[J]. 国际妇产科学杂志, 2025, 52(3): 286-292. |
[4] | 冷芹, 钟晓玲, 于威威. 美国母胎医学会《无自然早产史女性短子宫颈的管理指南(2024)》解读[J]. 国际妇产科学杂志, 2025, 52(3): 315-318. |
[5] | 连思晗, 韩梦菲, 王玉珏, 赵琳燕, 胡燕. E3泛素连接酶在宫颈癌中的研究进展[J]. 国际妇产科学杂志, 2025, 52(3): 319-325. |
[6] | 徐若兰, 杨将, 周金婷. 微流控技术在卵巢癌诊断和治疗中的应用[J]. 国际妇产科学杂志, 2025, 52(3): 326-330. |
[7] | 张伟峰, 张毅. 经脐单孔腹腔镜下卵巢良性肿瘤剥除的手术技巧探讨[J]. 国际妇产科学杂志, 2025, 52(3): 337-341. |
[8] | 褚莹, 王艺璇, 花震丹, 郑佳慧, 王赞宏. 基于SEER数据库构建卵巢卵黄囊瘤预后列线图预测模型[J]. 国际妇产科学杂志, 2025, 52(3): 342-349. |
[9] | 江文静, 丁勇利, 吕群, 谢蕙霞, 李若芃, 周敏. 青年女性巨大卵巢平滑肌瘤一例[J]. 国际妇产科学杂志, 2025, 52(3): 350-353. |
[10] | 黄银波, 王颖, 李翠红, 车力凡. 卵巢非特异性类固醇细胞瘤一例[J]. 国际妇产科学杂志, 2025, 52(3): 354-357. |
[11] | 陈家玉, 邵亚雯, 彭皓晨, 吴珍珍. 晚期卵巢浆液性癌伴腹股沟淋巴结转移一例[J]. 国际妇产科学杂志, 2025, 52(3): 357-360. |
[12] | 陈晓娟, 张艳馨. 妊娠合并血友病A患者足月分娩一例[J]. 国际妇产科学杂志, 2025, 52(2): 158-160. |
[13] | 张昊晟, 魏芳. Nectin-4在妇科恶性肿瘤中的研究进展[J]. 国际妇产科学杂志, 2025, 52(2): 165-168. |
[14] | 郭竞, 张茂祥, 周春鹤, 刘思宁, 李惠艳. 孟德尔随机化在暴露因素与宫颈癌因果关系中的研究进展[J]. 国际妇产科学杂志, 2025, 52(2): 169-174. |
[15] | 柴玲娜, 李艳丽, 石洁, 高晗, 欧阳夕颜, 程诗语. 吲哚菁绿示踪前哨淋巴结在早期宫颈癌中的应用[J]. 国际妇产科学杂志, 2025, 52(2): 175-179. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||