[1] |
Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3):229-263. doi: 10.3322/caac.21834.
|
[2] |
冯征, 郭勤浩, 朱俊, 等. 2023年度妇科恶性肿瘤治疗进展及展望[J]. 中国癌症杂志, 2024, 34(4):340-360. doi: 10.19401/j.cnki.1007-3639.2024.04.002.
|
[3] |
Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023[J]. CA Cancer J Clin, 2023, 73(1):17-48. doi: 10.3322/caac.21763.
|
[4] |
Dabbagh Moghaddam F, Dadgar D, Esmaeili Y, et al. Microfluidic platforms in diagnostic of ovarian cancer[J]. Environ Res, 2023, 237(Pt 2):117084. doi: 10.1016/j.envres.2023.117084.
|
[5] |
狄文, 张楠. 卵巢恶性肿瘤诊疗观念的思考与挑战[J]. 中国实用妇科与产科杂志, 2024, 40(11):1057-1060. doi: 10.19538/j.fk2024110101.
|
[6] |
Forstner R. Early detection of ovarian cancer[J]. Eur Radiol, 2020, 30(10):5370-5373. doi: 10.1007/s00330-020-06937-z.
pmid: 32468105
|
[7] |
张建楠, 郭鑫, 郭楠, 等. 微流控技术在卵巢癌疾病建模、药物评估、精准医疗中的应用[J]. 国际妇产科学杂志, 2024, 51(5):560-565. doi: 10.12280/gjfckx.20240523.
|
[8] |
Niculescu AG, Chircov C, Bîrcá AC, et al. Fabrication and Applications of Microfluidic Devices: A Review[J]. Int J Mol Sci, 2021, 22(4):2011. doi: 10.3390/ijms22042011.
|
[9] |
Deng ZM, Dai FF, Wang RQ, et al. Organ-on-a-chip: future of female reproductive pathophysiological models[J]. J Nanobiotechnology, 2024, 22(1):455. doi: 10.1186/s12951-024-02651-w.
|
[10] |
Pal K, Kraatz HB, Khasnobish A, et al. Bioelectronics and Medical Devices[M]. Woodhead Publishing, 2019:47-95.
|
[11] |
Mancera-Andrade EI, Parsaeimehr A, Arevalo-Gallegos A, et al. Microfluidics technology for drug delivery: A review[J]. Front Biosci(Elite Ed), 2018, 10(1):74-91. doi: 10.2741/e809.
|
[12] |
Wu Y, Wang C, Wang C, et al. Multiple Biomarker Simultaneous Detection in Serum via a Nanomaterial-Functionalized Biosensor for Ovarian Tumor/Cancer Diagnosis[J]. Micromachines(Basel), 2022, 13(12):2046. doi: 10.3390/mi13122046.
|
[13] |
Wu Y, Wang C, Wang P, et al. A high-performance microfluidic detection platform to conduct a novel multiple-biomarker panel for ovarian cancer screening[J]. RSC Adv, 2021, 11(14):8124-8133. doi: 10.1039/d0ra10200h.
pmid: 35423342
|
[14] |
Poulet G, Massias J, Taly V. Liquid Biopsy: General Concepts[J]. Acta Cytol, 2019, 63(6):449-455. doi: 10.1159/000499337.
pmid: 31091522
|
[15] |
Kibria G, Ramos EK, Wan Y, et al. Exosomes as a Drug Delivery System in Cancer Therapy: Potential and Challenges[J]. Mol Pharm, 2018, 15(9):3625-3633. doi: 10.1021/acs.molpharmaceut.8b00277.
|
[16] |
Bhavsar D, Raguraman R, Kim D, et al. Exosomes in diagnostic and therapeutic applications of ovarian cancer[J]. J Ovarian Res, 2024, 17(1):113. doi: 10.1186/s13048-024-01417-0.
pmid: 38796525
|
[17] |
Shi J. Considering Exosomal miR-21 as a Biomarker for Cancer[J]. J Clin Med, 2016, 5(4):42. doi: 10.3390/jcm5040042.
|
[18] |
Zhang P, Zhou X, He M, et al. Ultrasensitive detection of circulating exosomes with a 3D-nanopatterned microfluidic chip[J]. Nat Biomed Eng, 2019, 3(6):438-451. doi: 10.1038/s41551-019-0356-9.
pmid: 31123323
|
[19] |
Dorayappan K, Gardner ML, Hisey CL, et al. A Microfluidic Chip Enables Isolation of Exosomes and Establishment of Their Protein Profiles and Associated Signaling Pathways in Ovarian Cancer[J]. Cancer Res, 2019, 79(13):3503-3513. doi: 10.1158/0008-5472.CAN-18-3538.
pmid: 31097475
|
[20] |
Ganesh K, Massagué J. Targeting metastatic cancer[J]. Nat Med, 2021, 27(1):34-44. doi: 10.1038/s41591-020-01195-4.
pmid: 33442008
|
[21] |
Zhan Q, Liu B, Situ X, et al. New insights into the correlations between circulating tumor cells and target organ metastasis[J]. Signal Transduct Target Ther, 2023, 8(1):465. doi: 10.1038/s41392-023-01725-9.
|
[22] |
Gu X, Wei S, Lv X. Circulating tumor cells: from new biological insights to clinical practice[J]. Signal Transduct Target Ther, 2024, 9(1):226. doi: 10.1038/s41392-024-01938-6.
|
[23] |
Jou HJ, Chou LY, Chang WC, et al. An Automatic Platform Based on Nanostructured Microfluidic Chip for Isolating and Identification of Circulating Tumor Cells[J]. Micromachines(Basel), 2021, 12(5):473. doi: 10.3390/mi12050473.
|
[24] |
Guo YX, Neoh KH, Chang XH, et al. Diagnostic value of HE4+ circulating tumor cells in patients with suspicious ovarian cancer[J]. Oncotarget, 2018, 9(7):7522-7533. doi: 10.18632/oncotarget.23943.
|
[25] |
郑欣雨, 潘建章, 方群. 高通量类器官培养及其在药物筛选中的研究和应用进展[J]. 分析化学, 2024, 52(10):1475-1486. doi: 10.19756/j.issn.0253-3820.241340.
|
[26] |
Liu X, Zheng W, Jiang X. Cell-Based Assays on Microfluidics for Drug Screening[J]. ACS Sens, 2019, 4(6):1465-1475. doi: 10.1021/acssensors.9b00479.
|
[27] |
Arellano JA, Howell TA, Gammon J, et al. Use of a highly parallel microfluidic flow cell array to determine therapeutic drug dose response curves[J]. Biomed Microdevices, 2017, 19(2):25. doi: 10.1007/s10544-017-0166-3.
pmid: 28378146
|
[28] |
Lu H, Sun C, Zhou T, et al. HSP27 Knockdown Increases Cytoplasmic p21 and Cisplatin Sensitivity in Ovarian Carcinoma Cells[J]. Oncol Res, 2016, 23(3):119-128. doi: 10.3727/096504015X14496932933656.
pmid: 26931434
|
[29] |
Song TF, Zhang ZF, Liu L, et al. Small interfering RNA-mediated silencing of heat shock protein 27 (HSP27) Increases chemosensitivity to paclitaxel by increasing production of reactive oxygen species in human ovarian cancer cells (HO8910)[J]. J Int Med Res, 2009, 37(5):1375-1388. doi: 10.1177/147323000903700512.
pmid: 19930842
|
[30] |
Buckley M, Kramer M, Johnson B, et al. Mechanical activation and expression of HSP27 in epithelial ovarian cancer[J]. Sci Rep, 2024, 14(1):2856. doi: 10.1038/s41598-024-52992-7.
|
[31] |
VandenHeuvel SN, Chau E, Mohapatra A, et al. Macrophage Checkpoint Nanoimmunotherapy Has the Potential to Reduce Malignant Progression in Bioengineered In Vitro Models of Ovarian Cancer[J]. ACS Appl Bio Mater, 2024, 7(12):7871-7882. doi: 10.1021/acsabm.4c00076.
pmid: 38558434
|
[32] |
Rawas-Qalaji M, Cagliani R, Al-Hashimi N, et al. Microfluidics in drug delivery: review of methods and applications[J]. Pharm Dev Technol, 2023, 28(1):61-77. doi: 10.1080/10837450.2022.2162543.
|
[33] |
Naghib SM, Mohammad-Jafari K. Microfluidics-mediated Liposomal Nanoparticles for Cancer Therapy: Recent Developments on Advanced Devices and Technologies[J]. Curr Top Med Chem, 2024, 24(14):1185-1211. doi: 10.2174/0115680266286460240220073334.
|
[34] |
Giannitelli SM, Limiti E, Mozetic P, et al. Droplet-based microfluidic synthesis of nanogels for controlled drug delivery: tailoring nanomaterial properties via pneumatically actuated flow-focusing junction[J]. Nanoscale, 2022, 14(31):11415-11428. doi: 10.1039/d2nr00827k.
|
[35] |
Belur Nagaraj A, Joseph P, Kovalenko O, et al. Evaluating class III antiarrhythmic agents as novel MYC targeting drugs in ovarian cancer[J]. Gynecol Oncol, 2018, 151(3):525-532. doi: 10.1016/j.ygyno.2018.09.019.
pmid: 30301560
|
[36] |
Saorin A, Saorin G, Duzagac F, et al. Microfluidic production of amiodarone loaded nanoparticles and application in drug repositioning in ovarian cancer[J]. Sci Rep, 2024, 14(1):6280. doi: 10.1038/s41598-024-55801-3.
pmid: 38491077
|