[1] |
Spielmann H, Pohl I, Döring B, et al. The embryonic stem cell test (EST), an in vitro embryotoxicity test using two permanent mouse cell lines: 3T3 fibroblasts and embryonic stem cells[J]. In Vitro Toxicol, 1997, 10(1):119-127. doi: 10.1007/978-3-7091-7500-2_69.
|
[2] |
Mennen RH, Oldenburger MM, Piersma AH. Endoderm and mesoderm derivatives in embryonic stem cell differentiation and their use in developmental toxicity testing[J]. Reprod Toxicol, 2022, 107:44-59. doi: 10.1016/j.reprotox.2021.11.009.
|
[3] |
Adler S, Pellizzer C, Hareng L, et al. First steps in establishing a developmental toxicity test method based on human embryonic stem cells[J]. Toxicol In Vitro, 2008, 22(1):200-211. doi: 10.1016/j.tiv.2007.07.013.
pmid: 17961973
|
[4] |
Klemm M, Schrattenholz A. Neurotoxicity of active compounds--establishment of hESC-lines and proteomics technologies for human embryo- and neurotoxicity screening and biomarker identification[J]. ALTEX, 2004, 21(Suppl 3):41-48.
|
[5] |
Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts[J]. Science, 1998, 282(5391):1145-1147. doi: 10.1126/science.282.5391.1145.
pmid: 9804556
|
[6] |
Richards M, Fong CY, Chan WK, et al. Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells[J]. Nat Biotechnol, 2002, 20(9):933-936. doi: 10.1038/nbt726.
pmid: 12161760
|
[7] |
Shewale B, Dubois N. Of form and function: Early cardiac morphogenesis across classical and emerging model systems[J]. Semin Cell Dev Biol, 2021, 118:107-118. doi: 10.1016/j.semcdb.2021.04.025.
pmid: 33994301
|
[8] |
Braam SR, Tertoolen L, van de Stolpe A, et al. Prediction of drug-induced cardiotoxicity using human embryonic stem cell-derived cardiomyocytes[J]. Stem Cell Res, 2010, 4(2):107-116. doi: 10.1016/j.scr.2009.11.004.
pmid: 20034863
|
[9] |
Jiang Y, Wang D, Zhang G, et al. Disruption of cardiogenesis in human embryonic stem cells exposed to trichloroethylene[J]. Environ Toxicol, 2016, 31(11):1372-1380. doi: 10.1002/tox.22142.
pmid: 25847060
|
[10] |
Fu H, Wang L, Wang J, et al. Dioxin and AHR impairs mesoderm gene expression and cardiac differentiation in human embryonic stem cells[J]. Sci Total Environ, 2019, 651(Pt 1):1038-1046. doi: 10.1016/j.scitotenv.2018.09.247.
|
[11] |
He B, Chen J, Tian M, et al. Adverse effects of nicotine on cardiogenic differentiation from human embryonic stem cells detected by single-cell RNA sequencing[J]. Biochem Biophys Res Commun, 2020, 526(3):848-855. doi: 10.1016/j.bbrc.2020.03.149.
|
[12] |
Collins JM, Keane JM, Deady C, et al. Prenatal stress impacts foetal neurodevelopment: Temporal windows of gestational vulnerability[J]. Neurosci Biobehav Rev, 2024, 164:105793. doi: 10.1016/j.neubiorev.2024.105793.
|
[13] |
Zhang S, Zhao M, Li S, et al. Developmental toxicity assessment of neonicotinoids and organophosphate esters with a human embryonic stem cell- and metabolism-based fast-screening model[J]. J Environ Sci(China), 2024, 137:370-381. doi: 10.1016/j.jes.2023.02.022.
|
[14] |
Feutz AC, De Geyter C. Accuracy, discriminative properties and reliability of a human ESC-based in vitro toxicity assay to distinguish teratogens responsible for neural tube defects[J]. Arch Toxicol, 2019, 93(8):2375-2384. doi: 10.1007/s00204-019-02512-8.
|
[15] |
Shan W, Hu W, Wen Y, et al. Evaluation of atrazine neurodevelopment toxicity in vitro-application of hESC-based neural differentiation model[J]. Reprod Toxicol, 2021, 103:149-158. doi: 10.1016/j.reprotox.2021.06.009.
pmid: 34146662
|
[16] |
Liang X, Yin N, Liang S, et al. Bisphenol A and several derivatives exert neural toxicity in human neuron-like cells by decreasing neurite length[J]. Food Chem Toxicol, 2020, 135:111015. doi: 10.1016/j.fct.2019.111015.
pmid: 31812737
|
[17] |
Sottile V, Thomson A, McWhir J. In vitro osteogenic differentiation of human ES cells[J]. Cloning Stem Cells, 2003, 5(2):149-155. doi: 10.1089/153623003322234759.
pmid: 12930627
|
[18] |
Kääntä E, Parviainen R, Tikanmäki M, et al. Maternal Smoking During Pregnancy and Offspring′s Risk for Bone Fracture in Childhood and Adolescence[J]. J Bone Miner Res, 2023, 38(12):1791-1799. doi: 10.1002/jbmr.4923.
pmid: 37823763
|
[19] |
Martinez I, Sparks N, Madrid JV, et al. Exposure to Cigarette Smoke Impedes Human Osteoblast Differentiation Independently of Nicotine[J]. Nicotine Tob Res, 2022, 24(12):1921-1926. doi: 10.1093/ntr/ntac144.
pmid: 35778911
|
[20] |
Madrid JV, Vera-Colón M, Zur Nieden NI. Perturbations in Osteogenic Cell Fate Following Exposure to Constituents Present in Tobacco: A Combinatorial Study[J]. Toxics, 2023, 11(12):998. doi: 10.3390/toxics11120998.
|
[21] |
Cheng Z, Liang X, Liang S, et al. A human embryonic stem cell-based in vitro model revealed that ultrafine carbon particles may cause skin inflammation and psoriasis[J]. J Environ Sci(China), 2020, 87:194-204. doi: 10.1016/j.jes.2019.06.016.
|
[22] |
Li B, Jin X, Chan HM. Effects of low doses of methylmercury (MeHg) exposure on definitive endoderm cell differentiation in human embryonic stem cells[J]. Arch Toxicol, 2023, 97(10):2625-2641. doi: 10.1007/s00204-023-03580-7.
pmid: 37612375
|
[23] |
Huang X, Huang Z, Gao W, et al. Current Advances in 3D Dynamic Cell Culture Systems[J]. Gels, 2022, 8(12):829. doi: 10.3390/gels8120829.
|
[24] |
Marikawa Y, Chen HR, Menor M, et al. Exposure-based assessment of chemical teratogenicity using morphogenetic aggregates of human embryonic stem cells[J]. Reprod Toxicol, 2020, 91:74-91. doi: 10.1016/j.reprotox.2019.10.004.
pmid: 31711903
|
[25] |
Noh JS, Jeong JK, Han JW, et al. Rg3 and Rh2 ginsenosides suppress embryoid body formation by inhibiting the epithelial-mesenchymal transition[J]. Arch Pharm Res, 2022, 45(7):494-505. doi: 10.1007/s12272-022-01395-1.
pmid: 35759089
|
[26] |
Kirkwood-Johnson L, Marikawa Y. Developmental toxicity of remdesivir, an anti-COVID-19 drug, is implicated by in vitro assays using morphogenetic embryoid bodies of mouse and human pluripotent stem cells[J]. Birth Defects Res, 2023, 115(2):224-239. doi: 10.1002/bdr2.2111.
|
[27] |
Wang Y, Yin N, Yang R, et al. Development of a simplified human embryonic stem cell-based retinal pre-organoid model for toxicity evaluations of common pollutants[J]. Cutan Ocul Toxicol, 2023, 42(4):264-272. doi: 10.1080/15569527.2023.2249988.
|
[28] |
Bu Q, Huang Y, Li M, et al. Acrylamide exposure represses neuronal differentiation, induces cell apoptosis and promotes tau hyperphosphorylation in hESC-derived 3D cerebral organoids[J]. Food Chem Toxicol, 2020, 144:111643. doi: 10.1016/j.fct.2020.111643.
pmid: 32763439
|