国际妇产科学杂志 ›› 2022, Vol. 49 ›› Issue (1): 10-14.doi: 10.12280/gjfckx.20210256
收稿日期:
2021-03-21
出版日期:
2022-02-15
发布日期:
2022-03-02
通讯作者:
李华
E-mail:huali88@sina.com
YANG Lin, CAI Yu-han, LI Hua△()
Received:
2021-03-21
Published:
2022-02-15
Online:
2022-03-02
Contact:
LI Hua
E-mail:huali88@sina.com
摘要:
子宫内膜癌近年发病呈上升趋势且发病年龄不断年轻化,晚期子宫内膜癌治疗效果不理想。传统的分类方法在患者的诊疗中存在严重的不足,不能为患者精准治疗提供足够的依据。随着分子生物学的快速发展,越来越多的研究发现子宫内膜癌发病的多组学研究和信号通路关联,临床上迫切需要将其纳入患者的常规诊疗中。传统分型根据有无雌激素刺激将子宫内膜癌分成Ⅰ、Ⅱ两型,Ⅰ型子宫内膜癌的诊断和预后与人第10号染色体缺失的磷酸酶及张力蛋白同源的基因(PTEN)、磷脂酰肌醇3激酶基因(PI3KCA)、磷酸肌醇3激酶调节亚单位1(PI3KR1)、AT丰富结合域1A(ARID1A)、Kristen鼠肉瘤病毒原癌基因同源体(KRAS)、POLE、CTNNB1、TP53突变,DNA错配修复(MMR)蛋白缺失,雌激素受体(ER)、孕激素受体(PR)表达情况有关。Ⅱ型子宫内膜癌的预后与人表皮生长因子受体2(HER2)过表达、TP53突变、ARID1A突变有关。磷脂酰肌醇3激酶/蛋白激酶B(PI3K/Akt)、P53、丝裂原活化蛋白激酶(MAPK)和Wnt/β-连环蛋白信号通路与子宫内膜癌的发病密切相关。TCGA分型的替代分子分型ProMisE和Parra-Herran分子分型目前被临床用以评估子宫内膜癌的预后与治疗方案,但该分型与预后仍存在部分不匹配的病例,需要对该分型进行进一步细化研究。
杨琳, 蔡雨晗, 李华. 子宫内膜癌的分子机制及分子分型研究进展[J]. 国际妇产科学杂志, 2022, 49(1): 10-14.
YANG Lin, CAI Yu-han, LI Hua. Research Progress on Molecular Mechanism and Molecular Typing of Endometrial Carcinoma[J]. Journal of International Obstetrics and Gynecology, 2022, 49(1): 10-14.
[1] |
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2):115-132. doi: 10.3322/caac.21338.
doi: 10.3322/caac.21338 |
[2] |
Lu KH, Broaddus RR. Endometrial Cancer[J]. N Engl J Med, 2020, 383(21):2053-2064. doi: 10.1056/NEJMra1514010.
doi: 10.1056/NEJMra1514010 |
[3] |
曹楚楚, 黄炉仁, 傅芬. PI3K/Akt/mTOR信号通路及其相关基因突变与子宫内膜癌靶向性药物治疗的研究进展[J]. 基础医学与临床, 2017, 37(1):118-122. doi: 10.3969/j.issn.1001-6325.2017.01.043.
doi: 10.3969/j.issn.1001-6325.2017.01.043 |
[4] |
Castellucci E, He T, Goldstein DY, et al. DNA Polymerase ε Deficiency Leading to an Ultramutator Phenotype: A Novel Clinically Relevant Entity[J]. Oncologist, 2017, 22(5):497-502. doi: 10.1634/theoncologist.2017-0034.
doi: 10.1634/theoncologist.2017-0034 pmid: 28465371 |
[5] |
Monsur M, Yamaguchi M, Tashiro H, et al. Endometrial cancer with a POLE mutation progresses frequently through the type I pathway despite its high-grade endometrioid morphology: a cohort study at a single institution in Japan[J]. Med Mol Morphol, 2021, 54:133-145. doi: 10.1007/s00795-020-00273-3.
doi: 10.1007/s00795-020-00273-3 |
[6] |
戴一博, 王婧元, 赵路阳, 等. 子宫内膜癌DNA错配修复基因异常的相关研究进展[J]. 中华妇产科杂志, 2019, 54(12):869-872. doi: 10.3760/cma.j.issn.0529?567x.2019.12.013.
doi: 10.3760/cma.j.issn.0529?567x.2019.12.013 |
[7] |
Vietri MT, D′Elia G, Caliendo G, et al. Prevalence of mutations in BRCA and MMR genes in patients affected with hereditary endometrial cancer[J]. Med Oncol, 2021, 38(2):13. doi: 10.1007/s12032-021-01454-5.
doi: 10.1007/s12032-021-01454-5 |
[8] |
Kim SR, Tone A, Kim RH, et al. Understanding the clinical implication of mismatch repair deficiency in endometrioid endometrial cancer through a prospective study[J]. Gynecol Oncol, 2021, 161(1):221-227. doi: 10.1016/j.ygyno.2021.01.002.
doi: 10.1016/j.ygyno.2021.01.002 |
[9] |
Hu H, Chen Z, Ji L, et al. ARID1A-dependent permissive chromatin accessibility licenses estrogen-receptor signaling to regulate circadian rhythms genes in endometrial cancer[J]. Cancer Lett, 2020, 492:162-173. doi: 10.1016/j.canlet.2020.08.034.
doi: 10.1016/j.canlet.2020.08.034 |
[10] |
Kir G, Olgun ZC, Gunel H, et al. KRAS-mutated Uterine Endometrioid Carcinoma With Extensive Surface Changes Resulting in Striking Morphologic Mimicry of an Ovarian Serous Borderline Tumor[J]. Int J Gynecol Pathol, 2020, 39(6):573-577. doi: 10.1097/PGP.0000000000000652.
doi: 10.1097/PGP.0000000000000652 |
[11] |
Imboden S, Tapia C, Scheiwiller N, et al. Early-stage endometrial cancer, CTNNB1 mutations, and the relation between lymphovascular space invasion and recurrence[J]. Acta Obstet Gynecol Scand, 2020, 99(2):196-203. doi: 10.1111/aogs.13740.
doi: 10.1111/aogs.13740 |
[12] |
Russo M, Broach J, Sheldon K, et al. Clonal evolution in paired endometrial intraepithelial neoplasia/atypical hyperplasia and endometrioid adenocarcinoma[J]. Hum Pathol, 2017, 67:69-77. doi: 10.1016/j.humpath.2017.07.003.
doi: 10.1016/j.humpath.2017.07.003 |
[13] |
Twomey JD, Brahme NN, Zhang B. Drug-biomarker co-development in oncology-20 years and counting[J]. Drug Resist Updat, 2017, 30:48-62. doi: 10.1016/j.drup.2017.02.002.
doi: 10.1016/j.drup.2017.02.002 |
[14] |
Buza N. HER2 Testing and Reporting in Endometrial Serous Carcinoma: Practical Recommendations for HER2 Immunohistochemistry and Fluorescent In Situ Hybridization: Proceedings of the ISGyP Companion Society Session at the 2020 USCAP Annual Meeting[J]. Int J Gynecol Pathol, 2021, 40(1):17-23. doi: 10.1097/PGP.0000000000000711.
doi: 10.1097/PGP.0000000000000711 |
[15] |
Fader AN, Roque DM, Siegel E, et al. Randomized Phase II Trial of Carboplatin-Paclitaxel Versus Carboplatin-Paclitaxel-Trastuzumab in Uterine Serous Carcinomas That Overexpress Human Epidermal Growth Factor Receptor 2/neu[J]. J Clin Oncol, 2018, 36(20):2044-2051. doi: 10.1200/JCO.2017.76.5966.
doi: 10.1200/JCO.2017.76.5966 |
[16] |
Fader AN, Roque DM, Siegel E, et al. Randomized Phase II Trial of Carboplatin-Paclitaxel Compared with Carboplatin-Paclitaxel-Trastuzumab in Advanced (Stage III-IV) or Recurrent Uterine Serous Carcinomas that Overexpress Her2/Neu (NCT01367002): Updated Overall Survival Analysis[J]. Clin Cancer Res, 2020, 26(15):3928-3935. doi: 10.1158/1078-0432.CCR-20-0953.
doi: 10.1158/1078-0432.CCR-20-0953 |
[17] |
Chang YH, Ding DC. A clear cancer cell line (150057) derived from human endometrial carcinoma harbors two novel mutations[J]. BMC Cancer, 2020, 20(1):1058. doi: 10.1186/s12885-020-07567-w.
doi: 10.1186/s12885-020-07567-w |
[18] |
Zhang X, Kan H, Liu Y, et al. Plumbagin induces Ishikawa cell cycle arrest, autophagy, and apoptosis via the PI3K/Akt signaling pathway in endometrial cancer[J]. Food Chem Toxicol, 2021, 148:111957. doi: 10.1016/j.fct.2020.111957.
doi: 10.1016/j.fct.2020.111957 |
[19] |
Liu Z, Hong Z, Ma H, et al. Key factors mediated by PI3K signaling pathway and related genes in endometrial carcinoma[J]. J Bioenerg Biomembr, 2020, 52(6):465-473. doi: 10.1007/s10863-020-09854-4.
doi: 10.1007/s10863-020-09854-4 |
[20] |
Costa BP, Nassr MT, Diz FM, et al. Methoxyeugenol regulates the p53/p21 pathway and suppresses human endometrial cancer cell proliferation[J]. J Ethnopharmacol, 2021, 267:113645. doi: 10.1016/j.jep.2020.113645.
doi: 10.1016/j.jep.2020.113645 |
[21] |
Liu Q, Chen CY, Chen GL. High APOBEC1 Complementation Factor Expression Positively Modulates the Proliferation, Invasion, and Migration of Endometrial Cancer Cells Through Regulating P53/P21 Signaling Pathway[J]. Cancer Biother Radiopharm, 2020 Aug 18. doi: 10.1089/cbr.2020.3957.
doi: 10.1089/cbr.2020.3957 |
[22] |
Zhang XJ, Qi GT, Zhang XM, et al. lncRNA RHPN1-AS1 promotes the progression of endometrial cancer through the activation of ERK/MAPK pathway[J]. J Obstet Gynaecol Res, 2021, 47(2):533-543. doi: 10.1111/jog.14548.
doi: 10.1111/jog.14548 |
[23] |
鲍伟, 蔡斌, 杨懿霞, 等. 子宫内膜癌中ERK1/2信号转导通路与雌、孕激素受体的相关性[J]. 上海交通大学学报(医学版), 2009, 29(1):5-8. doi: CNKI:SUN:SHEY.0.2009-01-003.
doi: CNKI:SUN:SHEY.0.2009-01-003 |
[24] |
Zhang F, Ni ZJ, Ye L, et al. Asparanin A inhibits cell migration and invasion in human endometrial cancer via Ras/ERK/MAPK pathway[J]. Food Chem Toxicol, 2021, 150:112036. doi: 10.1016/j.fct.2021.112036.
doi: 10.1016/j.fct.2021.112036 pmid: 33561516 |
[25] |
Park SA, Kim LK, Kim YT, et al. Long non-coding RNA steroid receptor activator promotes the progression of endometrial cancer via Wnt/β-catenin signaling pathway[J]. Int J Biol Sci, 2020, 16(1):99-115. doi: 10.7150/ijbs.35643.
doi: 10.7150/ijbs.35643 |
[26] |
Kandoth C, Schultz N, Cherniack AD, et al. Integrated genomic characterization of endometrial carcinoma[J]. Nature, 2013, 497(7447):67-73. doi: 10.1038/nature12113.
doi: 10.1038/nature12113 |
[27] |
Stelloo E, Nout RA, Osse EM, et al. Improved Risk Assessment by Integrating Molecular and Clinicopathological Factors in Early-stage Endometrial Cancer-Combined Analysis of the PORTEC Cohorts[J]. Clin Cancer Res, 2016, 22(16):4215-4224. doi: 10.1158/1078-0432.CCR-15-2878.
doi: 10.1158/1078-0432.CCR-15-2878 pmid: 27006490 |
[28] |
Bosse T, Nout RA, McAlpine JN, et al. Molecular Classification of Grade 3 Endometrioid Endometrial Cancers Identifies Distinct Prognostic Subgroups[J]. Am J Surg Pathol, 2018, 42(5):561-568. doi: 10.1097/PAS.0000000000001020.
doi: 10.1097/PAS.0000000000001020 |
[29] |
Stelloo E, Nout RA, Osse EM, et al. Improved Risk Assessment by Integrating Molecular and Clinicopathological Factors in Early-stage Endometrial Cancer-Combined Analysis of the PORTEC Cohorts[J]. Clin Cancer Res, 2016, 22(16):4215-4224. doi: 10.1158/1078-0432.CCR-15-2878.
doi: 10.1158/1078-0432.CCR-15-2878 pmid: 27006490 |
[30] |
Travaglino A, Raffone A, Saccone G, et al. Immunophenotype of Atypical Polypoid Adenomyoma of the Uterus: Diagnostic Value and Insight on Pathogenesis[J]. Appl Immunohistochem Mol Morphol, 2020, 28(8):646-653. doi: 10.1097/PAI.0000000000000780.
doi: 10.1097/PAI.0000000000000780 |
[31] |
Wortman BG, Bosse T, Nout RA, et al. Molecular-integrated risk profile to determine adjuvant radiotherapy in endometrial cancer: Evaluation of the pilot phase of the PORTEC-4a trial[J]. Gynecol Oncol, 2018, 151(1):69-75. doi: 10.1016/j.ygyno.2018.07.020.
doi: S0090-8258(18)31084-9 pmid: 30078506 |
[32] |
Travaglino A, Raffone A, Mollo A, et al. TCGA molecular subgroups and FIGO grade in endometrial endometrioid carcinoma[J]. Arch Gynecol Obstet, 2020, 301(5):1117-1125. doi: 10.1007/s00404-020-05531-4.
doi: 10.1007/s00404-020-05531-4 pmid: 32253551 |
[33] |
Parra-Herran C, Lerner-Ellis J, Xu B, et al. Molecular-based classification algorithm for endometrial carcinoma categorizes ovarian endometrioid carcinoma into prognostically significant groups[J]. Mod Pathol, 2017, 30(12):1748-1759. doi: 10.1038/modpathol.2017.81.
doi: 10.1038/modpathol.2017.81 |
[34] |
Talhouk A, McConechy MK, Leung S, et al. Confirmation of ProMisE: A simple, genomics-based clinical classifier for endometrial cancer[J]. Cancer, 2017, 123(5):802-813. doi: 10.1002/cncr.30496.
doi: 10.1002/cncr.30496 pmid: 28061006 |
[35] |
杜宁宁, 刘岩, 任彩霞, 等. 癌症基因组图谱子宫内膜癌分子分型在子宫内膜样癌中的临床应用探索[J]. 中华病理学杂志, 2019, 48(8):596-603. doi: 10.3760/cma.j.issn.0529?5807.2019.08.003.
doi: 10.3760/cma.j.issn.0529?5807.2019.08.003 |
[1] | 侯春艳, 杜秀萍, 王红红, 侯岳洋. 高迁移率族蛋白A2在胎儿生长受限发病机制中的研究进展[J]. 国际妇产科学杂志, 2025, 52(2): 127-131. |
[2] | 白耀俊, 王思瑶, 令菲菲, 张森淮, 李红丽, 刘畅. Trop-2及靶向Trop-2抗体偶联药物在妇科恶性肿瘤中的应用进展[J]. 国际妇产科学杂志, 2025, 52(1): 1-7. |
[3] | 张云凤, 张宛玥, 卢悦, 王阳阳, 井佳雨, 牟婧祎, 王悦. ARID1A与PIK3CA突变在卵巢子宫内膜异位症恶变中的研究进展[J]. 国际妇产科学杂志, 2025, 52(1): 19-22. |
[4] | 邱婉宁, 魏瑗. 单卵双胎妊娠不一致异常的病因学研究进展[J]. 国际妇产科学杂志, 2024, 51(6): 607-610. |
[5] | 陈星羽, 韦雅婧, 梁炎春. 基于基因组学图谱构建的子宫平滑肌肉瘤前沿进展[J]. 国际妇产科学杂志, 2024, 51(6): 641-647. |
[6] | 高明周, 高冬梅, 马凤君, 张轲鑫, 张浩. 从雌激素波动视角探讨经前烦躁障碍症抑郁-疼痛发生基础研究进展[J]. 国际妇产科学杂志, 2024, 51(6): 703-706. |
[7] | 高艺苇, 罗伟, 吴琼, 穆玉兰. 铁死亡与早发性卵巢功能不全的关系[J]. 国际妇产科学杂志, 2024, 51(5): 497-502. |
[8] | 白耀俊, 胡晓红, 李红丽, 刘畅. 淋巴细胞活化基因-3在妇科肿瘤中的研究进展[J]. 国际妇产科学杂志, 2024, 51(5): 566-571. |
[9] | 何清, 胡红波. 人工智能在子宫内膜癌诊治中的应用与展望[J]. 国际妇产科学杂志, 2024, 51(5): 572-577. |
[10] | 陈治伟, 柳林. SMARCA4基因缺失的卵巢恶性肿瘤一例[J]. 国际妇产科学杂志, 2024, 51(5): 584-587. |
[11] | 苏海绮, 李雷. 甲基化检测用于卵巢癌筛查和诊断的研究进展[J]. 国际妇产科学杂志, 2024, 51(4): 366-369. |
[12] | 张益田, 李小丽. 线粒体在子宫内膜癌中的作用及治疗[J]. 国际妇产科学杂志, 2024, 51(4): 375-379. |
[13] | 闫海燕, 尹青青, 王梅, 张爱, 叶文凤, 李甜甜. 阔韧带子宫内膜样腺癌一例[J]. 国际妇产科学杂志, 2024, 51(4): 388-391. |
[14] | 郭希, 魏佳, 杨永秀. 导致子宫内膜疾病的激素通路及调节因素[J]. 国际妇产科学杂志, 2024, 51(4): 395-400. |
[15] | 司婧文, 于秀杰, 申彦. 2023版子宫内膜癌FIGO分期更新对病理诊断内容的影响[J]. 国际妇产科学杂志, 2024, 51(3): 241-246. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||