国际妇产科学杂志 ›› 2022, Vol. 49 ›› Issue (1): 29-33.doi: 10.12280/gjfckx.20210724
收稿日期:
2021-08-03
出版日期:
2022-02-15
发布日期:
2022-03-02
通讯作者:
平毅
E-mail:pingyi7110@126.com
基金资助:
Received:
2021-08-03
Published:
2022-02-15
Online:
2022-03-02
Contact:
PING Yi
E-mail:pingyi7110@126.com
摘要:
卵巢癌致死率极高,但发病机制尚不清楚。近年随着高通量测序技术的发展,女性生殖道和肠道微生物在卵巢癌方面的研究已成为热点。研究发现,在卵巢癌中,上、下生殖道优势菌群厚壁杆菌丰度降低,拟杆菌数量增多,肠道菌群频繁失调。其可能通过自身成分和代谢产物引起致癌反应、升高循环中的雌激素水平、促进卵巢癌发生,介导炎症反应影响免疫调节,在卵巢癌的发生发展中起重要作用。此外,女性生殖道和肠道微生物群还参与卵巢癌的治疗过程,与耐药和疗效密切相关。其中,粪菌移植、益生菌补充及抗生素的应用已得到初步探索。综述女性生殖道和肠道微生物群结构、与卵巢癌的相关性以及临床治疗研究,旨在为卵巢癌的筛查、治疗及预防提供新的方向和策略。
郭文迪, 平毅. 女性生殖道和肠道微生物在卵巢癌中的研究进展[J]. 国际妇产科学杂志, 2022, 49(1): 29-33.
GUO Wen-di, PING Yi. Research Progress of Female Reproductive Tract and Gut Microbiome in Ovarian Cancer[J]. Journal of International Obstetrics and Gynecology, 2022, 49(1): 29-33.
[1] |
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3):209-249. doi: 10.3322/caac.21660.
doi: 10.3322/caac.21660 |
[2] |
Jacobson D, Moore K, Gunderson C, et al. Shifts in gut and vaginal microbiomes are associated with cancer recurrence time in women with ovarian cancer[J]. PeerJ, 2021, 9:e11574. doi: 10.7717/peerj.11574.
doi: 10.7717/peerj.11574 pmid: 34178459 |
[3] |
Idahl A, Le Cornet C, González Maldonado S, et al. Serologic markers of Chlamydia trachomatis and other sexually transmitted infections and subsequent ovarian cancer risk: Results from the EPIC cohort[J]. Int J Cancer, 2020, 147(8):2042-2052. doi: 10.1002/ijc.32999.
doi: 10.1002/ijc.32999 |
[4] |
Nené NR, Reisel D, Leimbach A, et al. Association between the cervicovaginal microbiome, BRCA1 mutation status, and risk of ovarian cancer: a case-control study[J]. Lancet Oncol, 2019, 20(8):1171-1182. doi: 10.1016/S1470-2045(19)30340-7.
doi: 10.1016/S1470-2045(19)30340-7 |
[5] |
Cheng H, Wang Z, Cui L, et al. Opportunities and Challenges of the Human Microbiome in Ovarian Cancer[J]. Front Oncol, 2020, 10:163. doi: 10.3389/fonc.2020.00163.
doi: 10.3389/fonc.2020.00163 |
[6] |
Lin HW, Tu YY, Lin SY, et al. Risk of ovarian cancer in women with pelvic inflammatory disease: a population-based study[J]. Lancet Oncol, 2011, 12(9):900-904. doi: 10.1016/S1470-2045(11)70165-6.
doi: 10.1016/S1470-2045(11)70165-6 |
[7] |
Trabert B, Waterboer T, Idahl A, et al. Antibodies Against Chlamydia trachomatis and Ovarian Cancer Risk in Two Independent Populations[J]. J Natl Cancer Inst, 2019, 111(2):129-136. doi: 10.1093/jnci/djy084.
doi: 10.1093/jnci/djy084 |
[8] |
Wang Q, Zhao L, Han L, et al. The differential distribution of bacteria between cancerous and noncancerous ovarian tissues in situ[J]. J Ovarian Res, 2020, 13(1):8. doi: 10.1186/s13048-019-0603-4.
doi: 10.1186/s13048-019-0603-4 pmid: 31954395 |
[9] |
Xu S, Liu Z, Lv M, et al. Intestinal dysbiosis promotes epithelial-mesenchymal transition by activating tumor-associated macrophages in ovarian cancer[J]. Pathog Dis, 2019, 77(2):ftz019. doi: 10.1093/femspd/ftz019.
doi: 10.1093/femspd/ftz019 |
[10] |
Miao R, Badger TC, Groesch K, et al. Assessment of peritoneal microbial features and tumor marker levels as potential diagnostic tools for ovarian cancer[J]. PLoS One, 2020, 15(1):e0227707. doi: 10.1371/journal.pone.0227707.
doi: 10.1371/journal.pone.0227707 |
[11] |
Park GB, Chung YH, Kim D. Induction of galectin-1 by TLR-dependent PI3K activation enhances epithelial-mesenchymal transition of metastatic ovarian cancer cells[J]. Oncol Rep, 2017, 37(5):3137-3145. doi: 10.3892/or.2017.5533.
doi: 10.3892/or.2017.5533 pmid: 28350104 |
[12] |
Xie H, Hou Y, Cheng J, et al. Metabolic profiling and novel plasma biomarkers for predicting survival in epithelial ovarian cancer[J]. Oncotarget, 2017, 8(19):32134-32146. doi: 10.18632/oncotarget.16739.
doi: 10.18632/oncotarget.16739 |
[13] |
Sonner JK, Keil M, Falk-Paulsen M, et al. Dietary tryptophan links encephalogenicity of autoreactive T cells with gut microbial ecology[J]. Nat Commun, 2019, 10(1):4877. doi: 10.1038/s41467-019-12776-4.
doi: 10.1038/s41467-019-12776-4 pmid: 31653831 |
[14] |
Raza MH, Gul K, Arshad A, et al. Microbiota in cancer development and treatment[J]. J Cancer Res Clin Oncol, 2019, 145(1):49-63. doi: 10.1007/s00432-018-2816-0.
doi: 10.1007/s00432-018-2816-0 |
[15] |
Trabert B, Coburn SB, Falk RT, et al. Circulating estrogens and postmenopausal ovarian and endometrial cancer risk among current hormone users in the Women′s Health Initiative Observational Study[J]. Cancer Causes Control, 2019, 30(11):1201-1211. doi: 10.1007/s10552-019-01233-8.
doi: 10.1007/s10552-019-01233-8 |
[16] |
Fuhrman BJ, Feigelson HS, Flores R, et al. Associations of the fecal microbiome with urinary estrogens and estrogen metabolites in postmenopausal women[J]. J Clin Endocrinol Metab, 2014, 99(12):4632-4640. doi: 10.1210/jc.2014-2222.
doi: 10.1210/jc.2014-2222 |
[17] |
Parida S, Sharma D. The Microbiome-Estrogen Connection and Breast Cancer Risk[J]. Cells, 2019, 8(12):1642. doi: 10.3390/cells8121642.
doi: 10.3390/cells8121642 |
[18] |
Smolková K, Mikó E, Kovács T, et al. Nuclear Factor Erythroid 2-Related Factor 2 in Regulating Cancer Metabolism[J]. Antioxid Redox Signal, 2020, 33(13):966-997. doi: 10.1089/ars.2020.8024.
doi: 10.1089/ars.2020.8024 |
[19] |
Rahbar Saadat Y, Pourseif MM, Zununi Vahed S, et al. Modulatory Role of Vaginal-Isolated Lactococcus lactis on the Expression of miR-21, miR-200b, and TLR-4 in CAOV-4 Cells and In Silico Revalidation[J]. Probiotics Antimicrob Proteins, 2020, 12(3):1083-1096. doi: 10.1007/s12602-019-09596-9.
doi: 10.1007/s12602-019-09596-9 pmid: 31797280 |
[20] |
Szajnik M, Szczepanski MJ, Czystowska M, et al. TLR4 signaling induced by lipopolysaccharide or paclitaxel regulates tumor survival and chemoresistance in ovarian cancer[J]. Oncogene, 2009, 28(49):4353-4363. doi: 10.1038/onc.2009.289.
doi: 10.1038/onc.2009.289 pmid: 19826413 |
[21] |
Browning L, Patel MR, Horvath EB, et al. IL-6 and ovarian cancer: inflammatory cytokines in promotion of metastasis[J]. Cancer Manag Res, 2018, 10:6685-6693. doi: 10.2147/CMAR.S179189.
doi: 10.2147/CMAR.S179189 pmid: 30584363 |
[22] |
Park GB, Kim D. TLR5/7-mediated PI3K activation triggers epithelial-mesenchymal transition of ovarian cancer cells through WAVE3-dependent mesothelin or OCT4/SOX2 expression[J]. Oncol Rep, 2017, 38(5):3167-3176. doi: 10.3892/or.2017.5941.
doi: 10.3892/or.2017.5941 pmid: 28901470 |
[23] |
Rutkowski MR, Stephen TL, Svoronos N, et al. Microbially driven TLR5-dependent signaling governs distal malignant progression through tumor-promoting inflammation[J]. Cancer Cell, 2015, 27(1):27-40. doi: 10.1016/j.ccell.2014.11.009.
doi: 10.1016/j.ccell.2014.11.009 pmid: 25533336 |
[24] |
Moufarrij S, Dandapani M, Arthofer E, et al. Epigenetic therapy for ovarian cancer: promise and progress[J]. Clin Epigenetics, 2019, 11(1):7. doi: 10.1186/s13148-018-0602-0.
doi: 10.1186/s13148-018-0602-0 pmid: 30646939 |
[25] |
Allavena P, Chieppa M, Bianchi G, et al. Engagement of the mannose receptor by tumoral mucins activates an immune suppressive phenotype in human tumor-associated macrophages[J]. Clin Dev Immunol, 2010, 2010:547179. doi: 10.1155/2010/547179.
doi: 10.1155/2010/547179 |
[26] |
Zandi Z, Kashani B, Poursani EM, et al. TLR4 blockade using TAK-242 suppresses ovarian and breast cancer cells invasion through the inhibition of extracellular matrix degradation and epithelial-mesenchymal transition[J]. Eur J Pharmacol, 2019, 853:256-263. doi: 10.1016/j.ejphar.2019.03.046.
doi: 10.1016/j.ejphar.2019.03.046 |
[27] |
Iida N, Dzutsev A, Stewart CA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment[J]. Science, 2013, 342(6161):967-970. doi: 10.1126/science.1240527.
doi: 10.1126/science.1240527 |
[28] |
Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors[J]. Science, 2018, 359(6371):91-97. doi: 10.1126/science.aan3706.
doi: 10.1126/science.aan3706 |
[29] |
Perales-Puchalt A, Perez-Sanz J, Payne KK, et al. Frontline Science: Microbiota reconstitution restores intestinal integrity after cisplatin therapy[J]. J Leukoc Biol, 2018, 103(5):799-805. doi: 10.1002/JLB.5HI1117-446RR.
doi: 10.1002/JLB.5HI1117-446RR |
[30] |
Wang Y, Sun L, Chen S, et al. The administration of Escherichia coli Nissle 1917 ameliorates irinotecan-induced intestinal barrier dysfunction and gut microbial dysbiosis in mice[J]. Life Sci, 2019, 231:116529. doi: 10.1016/j.lfs.2019.06.004.
doi: 10.1016/j.lfs.2019.06.004 |
[31] |
Pflug N, Kluth S, Vehreschild JJ, et al. Efficacy of antineoplastic treatment is associated with the use of antibiotics that modulate intestinal microbiota[J]. Oncoimmunology, 2016, 5(6):e1150399. doi: 10.1080/2162402X.2016.1150399.
doi: 10.1080/2162402X.2016.1150399 |
[32] |
Davar D, Dzutsev AK, Mcculloch JA, et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients[J]. Science, 2021, 371(6529):595-602. doi: 10.1126/science.abf3363.
doi: 10.1126/science.abf3363 |
[33] |
Zhou B, Xia M, Wang B, et al. Clarithromycin synergizes with cisplatin to inhibit ovarian cancer growth in vitro and in vivo[J]. J Ovarian Res, 2019, 12(1):107. doi: 10.1186/s13048-019-0570-9.
doi: 10.1186/s13048-019-0570-9 pmid: 31703731 |
[34] |
Michalak M, Lach MS, Antoszczak M, et al. Overcoming Resistance to Platinum-Based Drugs in Ovarian Cancer by Salinomycin and Its Derivatives-An In Vitro Study[J]. Molecules, 2020, 25(3):537. doi: 10.3390/molecules25030537.
doi: 10.3390/molecules25030537 |
[35] |
Chambers LM, Kuznicki M, Yao M, et al. Impact of antibiotic treatment during platinum chemotherapy on survival and recurrence in women with advanced epithelial ovarian cancer[J]. Gynecol Oncol, 2020, 159(3):699-705. doi: 10.1016/j.ygyno.2020.09.010.
doi: 10.1016/j.ygyno.2020.09.010 pmid: 32950250 |
[36] |
Curiel TJ, Coukos G, Zou L, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival[J]. Nat Med, 2004, 10(9):942-949. doi: 10.1038/nm1093.
doi: 10.1038/nm1093 pmid: 15322536 |
[37] |
Schepisi G, Casadei C, Toma I, et al. Immunotherapy and Its Development for Gynecological (Ovarian, Endometrial and Cervical) Tumors: From Immune Checkpoint Inhibitors to Chimeric Antigen Receptor (CAR)-T Cell Therapy[J]. Cancers(Basel), 2021, 13(4):840. doi: 10.3390/cancers13040840.
doi: 10.3390/cancers13040840 |
[38] |
Zhang X, He T, Li Y, et al. Dendritic Cell Vaccines in Ovarian Cancer[J]. Front Immunol, 2020, 11:613773. doi: 10.3389/fimmu.2020.613773.
doi: 10.3389/fimmu.2020.613773 pmid: 33584699 |
[39] |
Wallace TC, Bultman S, D′Adamo C, et al. Personalized Nutrition in Disrupting Cancer - Proceedings From the 2017 American College of Nutrition Annual Meeting[J]. J Am Coll Nutr, 2019, 38(1):1-14. doi: 10.1080/07315724.2018.1500499.
doi: 10.1080/07315724.2018.1500499 pmid: 30511901 |
[40] |
Playdon MC, Nagle CM, Ibiebele TI, et al. Pre-diagnosis diet and survival after a diagnosis of ovarian cancer[J]. Br J Cancer, 2017, 116(12):1627-1637. doi: 10.1038/bjc.2017.120.
doi: 10.1038/bjc.2017.120 |
[1] | 杨洋, 马媛, 陈宥艺, 赵静, 马文娟. 重度子痫前期患者血清外泌体对人正常蜕膜免疫细胞功能的影响[J]. 国际妇产科学杂志, 2025, 52(2): 143-152. |
[2] | 张昊晟, 魏芳. Nectin-4在妇科恶性肿瘤中的研究进展[J]. 国际妇产科学杂志, 2025, 52(2): 165-168. |
[3] | 陈淑婉, 邓高丕, 袁烁. 子宫伴奇异形核平滑肌瘤一例[J]. 国际妇产科学杂志, 2025, 52(2): 187-190. |
[4] | 殷婷, 丛慧芳. 子宫内膜异位症与痛觉敏化的免疫学研究进展[J]. 国际妇产科学杂志, 2025, 52(2): 206-210. |
[5] | 白耀俊, 王思瑶, 令菲菲, 张森淮, 李红丽, 刘畅. Trop-2及靶向Trop-2抗体偶联药物在妇科恶性肿瘤中的应用进展[J]. 国际妇产科学杂志, 2025, 52(1): 1-7. |
[6] | 胡明珠, 刘丽文, 黄蕾. HIV感染女性的阴道微生态变化与宫颈癌的相关研究[J]. 国际妇产科学杂志, 2025, 52(1): 13-18. |
[7] | 张云凤, 张宛玥, 卢悦, 王阳阳, 井佳雨, 牟婧祎, 王悦. ARID1A与PIK3CA突变在卵巢子宫内膜异位症恶变中的研究进展[J]. 国际妇产科学杂志, 2025, 52(1): 19-22. |
[8] | 李楠, 彭二玄, 刘风花. 卵巢上皮性癌脑转移20例临床分析[J]. 国际妇产科学杂志, 2025, 52(1): 23-27. |
[9] | 贾炎峰, 吴珍珍, 王维红, 王玥元, 李娟. 原发性卵巢腺鳞癌一例[J]. 国际妇产科学杂志, 2025, 52(1): 32-36. |
[10] | 宋丽芳, 吴珍珍, 毛宝宏, 赵小丽, 刘青. 卵巢癌腹股沟淋巴结孤立转移一例[J]. 国际妇产科学杂志, 2025, 52(1): 37-41. |
[11] | 陈慧赟, 韩冰, 陈洁, 张洁, 章鹤, 张英辉. 妊娠合并神经精神性系统性红斑狼疮一例[J]. 国际妇产科学杂志, 2024, 51(6): 629-631. |
[12] | 刘思敏, 李红丽, 郭希, 胡雅莉, 杨永秀. 妊娠晚期合并卵巢浆液性囊腺瘤蒂扭转一例[J]. 国际妇产科学杂志, 2024, 51(6): 632-635. |
[13] | 陈志茹, 戴岚. 放化疗诱导肿瘤细胞死亡与肿瘤再增殖的研究进展[J]. 国际妇产科学杂志, 2024, 51(6): 648-653. |
[14] | 李丹宁, 汪希鹏. 单细胞测序技术解析上皮性卵巢癌免疫微环境的研究进展[J]. 国际妇产科学杂志, 2024, 51(6): 654-658. |
[15] | 钟晓盈, 刘海元. 子宫内膜微生物群的组成及研究进展[J]. 国际妇产科学杂志, 2024, 51(5): 481-485. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||