[1] |
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3):209-249. doi: 10.3322/caac.21660.
doi: 10.3322/caac.21660
|
[2] |
Ronco G, Dillner J, Elfström KM, et al. Efficacy of HPV-based screening for prevention of invasive cervical cancer: follow-up of four European randomised controlled trials[J]. Lancet, 2014, 383(9916):524-532. doi: 10.1016/S0140-6736(13)62218-7.
doi: 10.1016/S0140-6736(13)62218-7
|
[3] |
Arbyn M, Sasieni P, Meijer CJ, et al. Chapter 9: Clinical applications of HPV testing: a summary of meta-analyses[J]. Vaccine, 2006, 24 (Suppl 3):S3/78-89. doi: 10.1016/j.vaccine.2006.05.117.
doi: 10.1016/j.vaccine.2006.05.117
|
[4] |
Ilhan ZE, Łaniewski P, Thomas N, et al. Deciphering the complex interplay between microbiota, HPV, inflammation and cancer through cervicovaginal metabolic profiling[J]. EBioMedicine, 2019, 44:675-690. doi: 10.1016/j.ebiom.2019.04.028.
doi: 10.1016/j.ebiom.2019.04.028
|
[5] |
Nam M, Seo SS, Jung S, et al. Comparable Plasma Lipid Changes in Patients with High-Grade Cervical Intraepithelial Neoplasia and Patients with Cervical Cancer[J]. J Proteome Res, 2021, 20(1):740-750. doi: 10.1021/acs.jproteome.0c00640.
doi: 10.1021/acs.jproteome.0c00640
|
[6] |
Yin MZ, Tan S, Li X, et al. Identification of phosphatidylcholine and lysophosphatidylcholine as novel biomarkers for cervical cancers in a prospective cohort study[J]. Tumour Biol, 2016, 37(4):5485-5492. doi: 10.1007/s13277-015-4164-x.
doi: 10.1007/s13277-015-4164-x
|
[7] |
Hasim A, Aili A, Maimaiti A, et al. Plasma-free amino acid profiling of cervical cancer and cervical intraepithelial neoplasia patients and its application for early detection[J]. Mol Biol Rep, 2013, 40(10):5853-5859. doi: 10.1007/s11033-013-2691-3.
doi: 10.1007/s11033-013-2691-3
|
[8] |
Godoy-Vitorino F, Ortiz-Morales G, Romaguera J, et al. Discriminating high-risk cervical Human Papilloma Virus infections with urinary biomarkers via non-targeted GC-MS-based metabolomics[J]. PLoS One, 2018, 13(12):e0209936. doi: 10.1371/journal.pone.0209936.
doi: 10.1371/journal.pone.0209936
|
[9] |
Woo HM, Kim KM, Choi MH, et al. Mass spectrometry based metabolomic approaches in urinary biomarker study of women′s cancers[J]. Clin Chim Acta, 2009, 400(1/2):63-69. doi: 10.1016/j.cca.2008.10.014.
doi: 10.1016/j.cca.2008.10.014
|
[10] |
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5):646-674. doi: 10.1016/j.cell.2011.02.013.
doi: 10.1016/j.cell.2011.02.013
|
[11] |
Dang CV. Links between metabolism and cancer[J]. Genes Dev, 2012, 26(9):877-890. doi: 10.1101/gad.189365.112.
doi: 10.1101/gad.189365.112
|
[12] |
Abudula A, Rouzi N, Xu L, et al. Tissue-based metabolomics reveals potential biomarkers for cervical carcinoma and HPV infection[J]. Bosn J Basic Med Sci, 2020, 20(1):78-87. doi: 10.17305/bjbms.2019.4359.
doi: 10.17305/bjbms.2019.4359
|
[13] |
Warburg O, Wind F, Negelein E. The metabolism of tumors in the body[J]. J Gen Physiol, 1927, 8(6):519-530. doi: 10.1085/jgp.8.6.519.
doi: 10.1085/jgp.8.6.519
pmid: 19872213
|
[14] |
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation[J]. Science, 2009, 324(5930):1029-1033. doi: 10.1126/science.1160809.
doi: 10.1126/science.1160809
|
[15] |
Yu L, Chen X, Sun X, et al. The Glycolytic Switch in Tumors: How Many Players Are Involved?[J]. J Cancer, 2017, 8(17):3430-3440. doi: 10.7150/jca.21125.
doi: 10.7150/jca.21125
|
[16] |
Chen X, Yi C, Yang MJ, et al. Metabolomics study reveals the potential evidence of metabolic reprogramming towards the Warburg effect in precancerous lesions[J]. J Cancer, 2021, 12(5):1563-1574. doi: 10.7150/jca.54252.
doi: 10.7150/jca.54252
pmid: 33532002
|
[17] |
Khan I, Nam M, Kwon M, et al. LC/MS-Based Polar Metabolite Profiling Identified Unique Biomarker Signatures for Cervical Cancer and Cervical Intraepithelial Neoplasia Using Global and Targeted Metabolomics[J]. Cancers (Basel), 2019, 11(4):511. doi: 10.3390/cancers11040511.
doi: 10.3390/cancers11040511
|
[18] |
Ward PS, Thompson CB. Signaling in control of cell growth and metabolism[J]. Cold Spring Harb Perspect Biol, 2012, 4(7):a006783. doi: 10.1101/cshperspect.a006783.
doi: 10.1101/cshperspect.a006783
|
[19] |
Chung SH, Franceschi S, Lambert PF. Estrogen and ERalpha: culprits in cervical cancer?[J]. Trends Endocrinol Metab, 2010, 21(8):504-511. doi: 10.1016/j.tem.2010.03.005.
doi: 10.1016/j.tem.2010.03.005
|
[20] |
Hasim A, Ali M, Mamtimin B, et al. Metabonomic signature analysis of cervical carcinoma and precancerous lesions in women by (1)H NMR spectroscopy[J]. Exp Ther Med, 2012, 3(6):945-951. doi: 10.3892/etm.2012.509.
doi: 10.3892/etm.2012.509
|
[21] |
Yang K, Xia B, Wang W, et al. A Comprehensive Analysis of Metabolomics and Transcriptomics in Cervical Cancer[J]. Sci Rep, 2017, 7:43353. doi: 10.1038/srep43353.
doi: 10.1038/srep43353
|
[22] |
Cheng F, Wen Z, Feng X, et al. A serum lipidomic strategy revealed potential lipid biomarkers for early-stage cervical cancer[J]. Life Sci, 2020, 260:118489. doi: 10.1016/j.lfs.2020.118489.
doi: 10.1016/j.lfs.2020.118489
|
[23] |
Liu Y, Wei F, Wang F, et al. Serum peptidome profiling analysis for the identification of potential biomarkers in cervical intraepithelial neoplasia patients[J]. Biochem Biophys Res Commun, 2015, 465(3):476-480. doi: 10.1016/j.bbrc.2015.08.042.
doi: 10.1016/j.bbrc.2015.08.042
|
[24] |
Chen Y, Xu J, Zhang R, et al. Assessment of data pre-processing methods for LC-MS/MS-based metabolomics of uterine cervix cancer[J]. Analyst, 2013, 138(9):2669-2677. doi: 10.1039/c3an36818a.
doi: 10.1039/c3an36818a
|
[25] |
Tokareva AO, Chagovets VV, Starodubtseva NL, et al. Feature selection for OPLS discriminant analysis of cancer tissue lipidomics data[J]. J Mass Spectrom, 2020, 55(1):e4457. doi: 10.1002/jms.4457.
doi: 10.1002/jms.4457
|
[26] |
Porcari AM, Negrão F, Tripodi GL, et al. Molecular Signatures of High-Grade Cervical Lesions[J]. Front Oncol, 2018, 8:99. doi: 10.3389/fonc.2018.00099.
doi: 10.3389/fonc.2018.00099
|
[27] |
Paraskevaidi M, Cameron S, Whelan E, et al. Laser-assisted rapid evaporative ionisation mass spectrometry (LA-REIMS) as a metabolomics platform in cervical cancer screening[J]. EBio Medicine, 2020, 60:103017. doi: 10.1016/j.ebiom.2020.103017.
doi: 10.1016/j.ebiom.2020.103017
|
[28] |
Walker H, Burrell M, Flatley J, et al. A metabolite profiling method for diagnosis of precancerous cervical lesions and HPV persistence[J]. Bioanalysis, 2017, 9(8):601-608. doi: 10.4155/bio-2017-0012.
doi: 10.4155/bio-2017-0012
|
[29] |
Guerrero-Flores H, Apresa-García T, Garay-Villar Ó, et al. A non-invasive tool for detecting cervical cancer odor by trained scent dogs[J]. BMC Cancer, 2017, 17(1):79. doi: 10.1186/s12885-016-2996-4.
doi: 10.1186/s12885-016-2996-4
pmid: 28122528
|
[30] |
Rodríguez-Esquivel M, Rosales J, Castro R, et al. Volatolome of the Female Genitourinary Area: Toward the Metabolome of Cervical Cancer[J]. Arch Med Res, 2018, 49(1):27-35. doi: 10.1016/j.arcmed.2018.04.004.
doi: S0188-4409(18)30103-6
pmid: 29681412
|