国际妇产科学杂志 ›› 2022, Vol. 49 ›› Issue (6): 708-712.doi: 10.12280/gjfckx.20220603
叶莎1, 黄烨佩1, 马林1, 包晓燕1, 杨茹1, 邓妙1, 黄坚1()
收稿日期:
2022-07-25
出版日期:
2022-12-15
发布日期:
2023-10-17
通讯作者:
黄坚
E-mail:huangjian96e90@163.com
基金资助:
YE Sha1, HUANG Ye-pei1, MA Lin1, BAO Xiao-yan1, YANG Ru1, DENG Miao1, HUANG Jian1()
Received:
2022-07-25
Published:
2022-12-15
Online:
2023-10-17
Contact:
HUANG Jian
E-mail:huangjian96e90@163.com
摘要:
多囊卵巢综合征(polycystic ovary syndrome,PCOS)是一种常见于育龄妇女的内分泌代谢性疾病,以月经不规则、高雄激素血症和卵巢多囊样改变为特征,常表现为肥胖、不孕和胰岛素抵抗。硫氧还蛋白相互作用蛋白(thioredoxin-interacting protein,TXNIP)是一种多功能调节剂,不仅参与胰岛素分泌和葡萄糖代谢的调节,还与氧化应激、炎症因子和情绪障碍密切相关。PCOS患者体内的TXNIP水平较健康人群明显增加,表明TXNIP可能参与PCOS及其并发症的发生、发展。近年体内外研究尝试应用中药提取物和西医药物抑制TXNIP的表达,TXNIP特异性抑制剂的发现使TXNIP有望成为抑制PCOS进程的有效靶点。综述TXNIP在PCOS中的作用进展,以期为PCOS发病机制的深入研究及临床诊疗提供新的思路和方向。
叶莎, 黄烨佩, 马林, 包晓燕, 杨茹, 邓妙, 黄坚. 硫氧还蛋白相互作用蛋白在多囊卵巢综合征中作用的研究进展[J]. 国际妇产科学杂志, 2022, 49(6): 708-712.
YE Sha, HUANG Ye-pei, MA Lin, BAO Xiao-yan, YANG Ru, DENG Miao, HUANG Jian. Research Progress on the Role of Thioredoxin-Interacting Protein in Polycystic Ovary Syndrome[J]. Journal of International Obstetrics and Gynecology, 2022, 49(6): 708-712.
药物名称 | 研究对象 | 主要机制 | |
---|---|---|---|
中药提取物 | 红景天苷 | T2DM小鼠[ | 通过TXNIP/NLRP3炎症小体通路减轻氧化应激;减少肝脏中的脂质堆积 |
机制 | 黄连素 | MCD诱导的NASH小鼠[ | 同上 |
槲皮素 | STZ诱导的DM大鼠[ | 同上 | |
京尼平苷 | 脂肪细胞[ | 增强葡萄糖摄取,增加IRS-1和GLUT-1的蛋白质水平;通过蛋白酶体途径加速TXNIP降解,改善胰岛素信号传导缺陷 | |
Icariin | 高糖诱导的C2C12肌管细胞[ | 通过蛋白酶体依赖性机制改善IR;抑制内质网应激 | |
西药 | 维拉帕米 | STZ诱导的DM小鼠[ | 减少细胞内钙,抑制钙调磷酸酶信号传导;减少ChREBP与TXNIP启动子中E-box重复序列的结合 |
二甲双胍 | APOE-/-小鼠[ | 激活AMPK,调控TRX/TXNIP复合物;抑制NLRP3炎症小体的激活 | |
维生素D | 高葡萄糖培养的人内皮细胞[ | 阻碍HUVECs中的脂滴形成,纠正HUVEC中的脂质代谢失衡 | |
度拉鲁肽 | 内皮细胞[ | 抑制ROS的产生,降低NLRP3炎症小体和caspase-1的表达 |
表1 使用中西药物抑制TXNIP表达的研究
药物名称 | 研究对象 | 主要机制 | |
---|---|---|---|
中药提取物 | 红景天苷 | T2DM小鼠[ | 通过TXNIP/NLRP3炎症小体通路减轻氧化应激;减少肝脏中的脂质堆积 |
机制 | 黄连素 | MCD诱导的NASH小鼠[ | 同上 |
槲皮素 | STZ诱导的DM大鼠[ | 同上 | |
京尼平苷 | 脂肪细胞[ | 增强葡萄糖摄取,增加IRS-1和GLUT-1的蛋白质水平;通过蛋白酶体途径加速TXNIP降解,改善胰岛素信号传导缺陷 | |
Icariin | 高糖诱导的C2C12肌管细胞[ | 通过蛋白酶体依赖性机制改善IR;抑制内质网应激 | |
西药 | 维拉帕米 | STZ诱导的DM小鼠[ | 减少细胞内钙,抑制钙调磷酸酶信号传导;减少ChREBP与TXNIP启动子中E-box重复序列的结合 |
二甲双胍 | APOE-/-小鼠[ | 激活AMPK,调控TRX/TXNIP复合物;抑制NLRP3炎症小体的激活 | |
维生素D | 高葡萄糖培养的人内皮细胞[ | 阻碍HUVECs中的脂滴形成,纠正HUVEC中的脂质代谢失衡 | |
度拉鲁肽 | 内皮细胞[ | 抑制ROS的产生,降低NLRP3炎症小体和caspase-1的表达 |
[1] |
薛诗瑶, 杨刚毅. 多囊卵巢综合征的诊治进展[J]. 中华内分泌代谢杂志, 2020, 36(1):88-92. doi: 10.3760/cma.j.issn.1000-6699.2020.01.013.
doi: 10.3760/cma.j.issn.1000-6699.2020.01.013 |
[2] |
Qayyum N, Haseeb M, Kim MS, et al. Role of Thioredoxin-Interacting Protein in Diseases and Its Therapeutic Outlook[J]. Int J Mol Sci, 2021, 22(5):2754. doi: 10.3390/ijms22052754.
doi: 10.3390/ijms22052754 |
[3] |
Wu J, Wu Y, Zhang X, et al. Elevated serum thioredoxin-interacting protein in women with polycystic ovary syndrome is associated with insulin resistance[J]. Clin Endocrinol (Oxf), 2014, 80(4):538-544. doi: 10.1111/cen.12192.
doi: 10.1111/cen.12192 |
[4] |
Domingues A, Jolibois J, Marquet de Rougé P, et al. The Emerging Role of TXNIP in Ischemic and Cardiovascular Diseases; A Novel Marker and Therapeutic Target[J]. Int J Mol Sci, 2021, 22(4):1693. doi: 10.3390/ijms22041693.
doi: 10.3390/ijms22041693 |
[5] |
Mohamed IN, Li L, Ismael S, et al. Thioredoxin interacting protein, a key molecular switch between oxidative stress and sterile inflammation in cellular response[J]. World J Diabetes, 2021, 12(12):1979-1999. doi: 10.4239/wjd.v12.i12.1979.
doi: 10.4239/wjd.v12.i12.1979 pmid: 35047114 |
[6] |
扶涛, 张学云, 骆严. 硫氧还蛋白互作蛋白研究进展[J]. 生命的化学, 2019, 39(3):438-445. doi: 10.13488/j.smhx.20180134.
doi: 10.13488/j.smhx.20180134 |
[7] |
Suzuki S, Yokoyama A, Noro E, et al. Expression and pathophysiological significance of carbohydrate response element binding protein (ChREBP) in the renal tubules of diabetic kidney[J]. Endocr J, 2020, 67(3):335-345. doi: 10.1507/endocrj.EJ19-0133.
doi: 10.1507/endocrj.EJ19-0133 pmid: 31813922 |
[8] |
Parikh H, Carlsson E, Chutkow WA, et al. TXNIP regulates peripheral glucose metabolism in humans[J]. PLoS Med, 2007, 4(5):e158. doi: 10.1371/journal.pmed.0040158.
doi: 10.1371/journal.pmed.0040158 pmid: 17472435 |
[9] |
Shorakae S, Ranasinha S, Abell S, et al. Inter-related effects of insulin resistance, hyperandrogenism, sympathetic dysfunction and chronic inflammation in PCOS[J]. Clin Endocrinol (Oxf), 2018, 89(5):628-633. doi: 10.1111/cen.13808.
doi: 10.1111/cen.13808 |
[10] |
Shalev A. Minireview: Thioredoxin-interacting protein: regulation and function in the pancreatic β-cell[J]. Mol Endocrinol, 2014, 28(8):1211-1220. doi: 10.1210/me.2014-1095.
doi: 10.1210/me.2014-1095 pmid: 24911120 |
[11] |
Chutkow WA, Lee RT. Thioredoxin regulates adipogenesis through thioredoxin-interacting protein (Txnip) protein stability[J]. J Biol Chem, 2011, 286(33):29139-29145. doi: 10.1074/jbc.M111.267666.
doi: 10.1074/jbc.M111.267666 pmid: 21705327 |
[12] | 孙雅南, 潘佳秋, 张丽丽, 等. 硫氧还蛋白互作蛋白与胰岛功能及胰岛素抵抗的相关性[J]. 湖北民族学院学报(医学版), 2019, 36(1):28-30,34. |
[13] |
Lian D, Yuan H, Yin X, et al. Puerarin inhibits hyperglycemia-induced inter-endothelial junction through suppressing endothelial Nlrp3 inflammasome activation via ROS-dependent oxidative pathway[J]. Phytomedicine, 2019, 55:310-319. doi: 10.1016/j.phymed.2018.10.013.
doi: S0944-7113(18)30535-X pmid: 30385134 |
[14] |
Ke B, Shen W, Fang X, et al. The NLPR3 inflammasome and obesity-related kidney disease[J]. J Cell Mol Med, 2018, 22(1):16-24. doi: 10.1111/jcmm.13333.
doi: 10.1111/jcmm.13333 pmid: 28857469 |
[15] |
Kelly CC, Lyall H, Petrie JR, et al. Low grade chronic inflammation in women with polycystic ovarian syndrome[J]. J Clin Endocrinol Metab, 2001, 86(6):2453-2455. doi: 10.1210/jcem.86.6.7580.
doi: 10.1210/jcem.86.6.7580 |
[16] |
Moulana M. Immunophenotypic profile of leukocytes in hyperandrogenemic female rat an animal model of polycystic ovary syndrome[J]. Life Sci, 2019, 220:44-49. doi: 10.1016/j.lfs.2019.01.048.
doi: S0024-3205(19)30061-X pmid: 30708097 |
[17] |
白桂荣, 韩晶, 梁志军, 等. 不同糖代谢人群中Txnip水平及其与炎症/氧化应激的相关性研究[J]. 宁夏医学杂志, 2021, 43(4):321-323. doi: 10.13621/j.1001-5949.2021.04.0321.
doi: 10.13621/j.1001-5949.2021.04.0321 |
[18] |
Zhao W, Pu M, Shen S, et al. Geniposide improves insulin resistance through AMPK-mediated Txnip protein degradation in 3T3-L1 adipocytes[J]. Acta Biochim Biophys Sin (Shanghai), 2021, 53(2):160-169. doi: 10.1093/abbs/gmaa157.
doi: 10.1093/abbs/gmaa157 |
[19] |
Zhou R, Tardivel A, Thorens B, et al. Thioredoxin-interacting protein links oxidative stress to inflammasome activation[J]. Nat Immunol, 2010, 11(2):136-140. doi: 10.1038/ni.1831.
doi: 10.1038/ni.1831 pmid: 20023662 |
[20] |
Dokras A, Stener-Victorin E, Yildiz BO, et al. Androgen Excess- Polycystic Ovary Syndrome Society: position statement on depression, anxiety, quality of life, and eating disorders in polycystic ovary syndrome[J]. Fertil Steril, 2018, 109(5):888-899. doi: 10.1016/j.fertnstert.2018.01.038.
doi: S0015-0282(18)30064-5 pmid: 29778388 |
[21] |
Pan SM, Pan Y, Tang YL, et al. Thioredoxin interacting protein drives astrocytic glucose hypometabolism in corticosterone-induced depressive state[J]. J Neurochem, 2022, 161(1):84-100. doi: 10.1111/jnc.15489.
doi: 10.1111/jnc.15489 |
[22] |
Zhou H, Tan H, Bharti V, et al. 327-Thioredoxin-interacting protein, a potential pharmacological target for the treatment of depression[J]. Free Radic Biol Med, 2018, 128(Suppl 1):S135. doi: 10.1016/j.freeradbiomed.2018.10.357.
doi: 10.1016/j.freeradbiomed.2018.10.357 |
[23] |
Zheng T, Yang X, Wu D, et al. Salidroside ameliorates insulin resistance through activation of a mitochondria-associated AMPK/PI3K/Akt/GSK3β pathway[J]. Br J Pharmacol, 2015, 172(13):3284-3301. doi: 10.1111/bph.13120.
doi: 10.1111/bph.13120 |
[24] |
Zheng T, Yang X, Li W, et al. Salidroside Attenuates High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease via AMPK-Dependent TXNIP/NLRP3 Pathway[J]. Oxid Med Cell Longev, 2018, 2018:8597897. doi: 10.1155/2018/8597897.
doi: 10.1155/2018/8597897 |
[25] |
Mai W, Xu Y, Xu J, et al. Berberine Inhibits Nod-Like Receptor Family Pyrin Domain Containing 3 Inflammasome Activation and Pyroptosis in Nonalcoholic Steatohepatitis via the ROS/TXNIP Axis[J]. Front Pharmacol, 2020, 11:185. doi: 10.3389/fphar.2020.00185.
doi: 10.3389/fphar.2020.00185 |
[26] |
Eraky SM, Ramadan NM, Abo El-Magd NF. Antidiabetic effects of quercetin and liraglutide combination through modulation of TXNIP/IRS-1/PI3K pathway[J]. Cell Biochem Funct, 2022, 40(1):90-102. doi: 10.1002/cbf.3678.
doi: 10.1002/cbf.3678 |
[27] |
Zhang X, Zhang JH, Chen XY, et al. Reactive oxygen species-induced TXNIP drives fructose-mediated hepatic inflammation and lipid accumulation through NLRP3 inflammasome activation[J]. Antioxid Redox Signal, 2015, 22(10):848-870. doi: 10.1089/ars.2014.5868.
doi: 10.1089/ars.2014.5868 |
[28] |
Liu CY, Hao YN, Yin F, et al. Geniposide accelerates proteasome degradation of Txnip to inhibit insulin secretion in pancreatic β-cells[J]. J Endocrinol Invest, 2017, 40(5):505-512. doi: 10.1007/s40618-016-0591-9.
doi: 10.1007/s40618-016-0591-9 pmid: 28000177 |
[29] |
Li M, Zhang Y, Cao Y, et al. Icariin Ameliorates Palmitate-Induced Insulin Resistance Through Reducing Thioredoxin-Interacting Protein (TXNIP) and Suppressing ER Stress in C2C12 Myotubes[J]. Front Pharmacol, 2018, 9:1180. doi: 10.3389/fphar.2018.01180.
doi: 10.3389/fphar.2018.01180 pmid: 30459603 |
[30] |
Xu G, Chen J, Jing G, et al. Preventing β-cell loss and diabetes with calcium channel blockers[J]. Diabetes, 2012, 61(4):848-856. doi: 10.2337/db11-0955.
doi: 10.2337/db11-0955 pmid: 22442301 |
[31] |
Malayeri A, Zakerkish M, Ramesh F, et al. The Effect of Verapamil on TXNIP Gene Expression, GLP1R mRNA, FBS, HbA1c, and Lipid Profile in T2DM Patients Receiving Metformin and Sitagliptin[J]. Diabetes Ther, 2021, 12(10):2701-2713. doi: 10.1007/s13300-021-01145-4.
doi: 10.1007/s13300-021-01145-4 pmid: 34480721 |
[32] |
Tang G, Duan F, Li W, et al. Metformin inhibited Nod-like receptor protein 3 inflammasomes activation and suppressed diabetes-accelerated atherosclerosis in apoE-/- mice[J]. Biomed Pharmacother, 2019, 119:109410. doi: 10.1016/j.biopha.2019.109410.
doi: 10.1016/j.biopha.2019.109410 |
[33] |
Scrimieri R, Cazzaniga A, Castiglioni S, et al. Vitamin D Prevents High Glucose-Induced Lipid Droplets Accumulation in Cultured Endothelial Cells: The Role of Thioredoxin Interacting Protein[J]. Biomedicines, 2021, 9(12):1874. doi: 10.3390/biomedicines9121874.
doi: 10.3390/biomedicines9121874 |
[34] |
Luo X, Hu Y, He S, et al. Dulaglutide inhibits high glucose- induced endothelial dysfunction and NLRP3 inflammasome activation[J]. Arch Biochem Biophys, 2019, 671:203-209. doi: 10.1016/j.abb.2019.07.008.
doi: S0003-9861(19)30264-4 pmid: 31302140 |
[35] |
Han Y, Xu X, Tang C, et al. Reactive oxygen species promote tubular injury in diabetic nephropathy: The role of the mitochondrial ros-txnip-nlrp3 biological axis[J]. Redox Biol, 2018, 16:32-46. doi: 10.1016/j.redox.2018.02.013.
doi: S2213-2317(17)30978-3 pmid: 29475133 |
[36] |
Thielen LA, Chen J, Jing G, et al. Identification of an Anti-diabetic, Orally Available Small Molecule that Regulates TXNIP Expression and Glucagon Action[J]. Cell Metab, 2020, 32(3):353-365.e8. doi: 10.1016/j.cmet.2020.07.002.
doi: S1550-4131(20)30360-0 pmid: 32726606 |
[37] |
Qin K, Zhang N, Zhang Z, et al. SIRT6-mediated transcriptional suppression of Txnip is critical for pancreatic beta cell function and survival in mice[J]. Diabetologia, 2018, 61(4):906-918. doi: 10.1007/s00125-017-4542-6.
doi: 10.1007/s00125-017-4542-6 pmid: 29322219 |
[38] |
Li Y, Yao N, Gao Y, et al. MiR-1224-5p attenuates polycystic ovary syndrome through inhibiting NOD-like receptor protein 3 inflammasome activation via targeting Forkhead box O1[J]. Bioengineered, 2021, 12(1):8555-8569. doi: 10.1080/21655979.2021.1987125.
doi: 10.1080/21655979.2021.1987125 |
[1] | 陈晓娟, 张艳馨. 妊娠合并血友病A患者足月分娩一例[J]. 国际妇产科学杂志, 2025, 52(2): 158-160. |
[2] | 张昊晟, 魏芳. Nectin-4在妇科恶性肿瘤中的研究进展[J]. 国际妇产科学杂志, 2025, 52(2): 165-168. |
[3] | 林环宇, 邵小光, 路旭宏, 王秋月, 魏巍, 佟春艳. Web of Science核心数据库2004—2024年女性恶性肿瘤患者生育力保存的研究现状及热点[J]. 国际妇产科学杂志, 2025, 52(2): 180-186. |
[4] | 江爱美, 张信美. 腹壁子宫内膜异位症的治疗进展[J]. 国际妇产科学杂志, 2025, 52(2): 211-216. |
[5] | 徐淑颖, 徐海鹏, 王丽娜, 张阳. 锌与多囊卵巢综合征的关系[J]. 国际妇产科学杂志, 2025, 52(2): 217-221. |
[6] | 闫辉波, 张琳. 1990—2021年中国及全球多囊卵巢综合征疾病负担及预测分析[J]. 国际妇产科学杂志, 2025, 52(2): 228-233. |
[7] | 白耀俊, 王思瑶, 令菲菲, 张森淮, 李红丽, 刘畅. Trop-2及靶向Trop-2抗体偶联药物在妇科恶性肿瘤中的应用进展[J]. 国际妇产科学杂志, 2025, 52(1): 1-7. |
[8] | 侯春艳, 杜秀萍. 妊娠中晚期自发性子宫破裂二例[J]. 国际妇产科学杂志, 2025, 52(1): 110-113. |
[9] | 钟佩蕖, 招丽坚, 邹欣欣. 残角子宫妊娠行期待治疗至妊娠晚期一例[J]. 国际妇产科学杂志, 2025, 52(1): 114-116. |
[10] | 潘琪, 冯同富, 金晶, 吴莺, 杜欣. 腹腔镜切除成人腹膜后巨大成熟性畸胎瘤一例[J]. 国际妇产科学杂志, 2025, 52(1): 28-31. |
[11] | 贾炎峰, 吴珍珍, 王维红, 王玥元, 李娟. 原发性卵巢腺鳞癌一例[J]. 国际妇产科学杂志, 2025, 52(1): 32-36. |
[12] | 宋丽芳, 吴珍珍, 毛宝宏, 赵小丽, 刘青. 卵巢癌腹股沟淋巴结孤立转移一例[J]. 国际妇产科学杂志, 2025, 52(1): 37-41. |
[13] | 陈淑琳, 乔峤. 阴道上皮损伤修复与微生态环境的关系[J]. 国际妇产科学杂志, 2025, 52(1): 52-56. |
[14] | 石百超, 王宇, 常惠, 卢凤娟, 关木馨, 余健楠, 吴效科. 中药及天然产物改善子宫内膜异位症的作用机制[J]. 国际妇产科学杂志, 2025, 52(1): 66-71. |
[15] | 李恒兵, 袁海宁, 张云洁, 张江琳, 郭子珍, 孙振高. 外泌体通过调控免疫微环境治疗慢性子宫内膜炎的研究进展[J]. 国际妇产科学杂志, 2025, 52(1): 72-78. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||