[1] |
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3):209-249. doi: 10.3322/caac.21660.
doi: 10.3322/caac.21660
|
[2] |
Morand S, Devanaboyina M, Staats H, et al. Ovarian Cancer Immunotherapy and Personalized Medicine[J]. Int J Mol Sci, 2021, 22(12):6532. doi: 10.3390/ijms22126532.
doi: 10.3390/ijms22126532
|
[3] |
Kobayashi H, Choyke PL. Near-Infrared Photoimmunotherapy of Cancer[J]. Acc Chem Res, 2019, 52(8):2332-2339. doi: 10.1021/acs.accounts.9b00273.
doi: 10.1021/acs.accounts.9b00273
|
[4] |
Kobayashi H, Griffiths GL, Choyke PL. Near-Infrared Photoimmunotherapy: Photoactivatable Antibody-Drug Conjugates (ADCs)[J]. Bioconjug Chem, 2020, 31(1):28-36. doi: 10.1021/acs.bioconjchem.9b00546.
doi: 10.1021/acs.bioconjchem.9b00546
|
[5] |
Sato K, Ando K, Okuyama S, et al. Photoinduced Ligand Release from a Silicon Phthalocyanine Dye Conjugated with Monoclonal Antibodies: A Mechanism of Cancer Cell Cytotoxicity after Near-Infrared Photoimmunotherapy[J]. ACS Cent Sci, 2018, 4(11):1559-1569. doi: 10.1021/acscentsci.8b00565.
doi: 10.1021/acscentsci.8b00565
|
[6] |
Ogawa M, Tomita Y, Nakamura Y, et al. Immunogenic cancer cell death selectively induced by near infrared photoimmunotherapy initiates host tumor immunity[J]. Oncotarget, 2017, 8(6):10425-10436. doi: 10.18632/oncotarget.14425.
doi: 10.18632/oncotarget.14425
pmid: 28060726
|
[7] |
Kobayashi H, Furusawa A, Rosenberg A, et al. Near-infrared photoimmunotherapy of cancer: a new approach that kills cancer cells and enhances anti-cancer host immunity[J]. Int Immunol, 2021, 33(1):7-15. doi: 10.1093/intimm/dxaa037.
doi: 10.1093/intimm/dxaa037
pmid: 32496557
|
[8] |
van Straten D, Mashayekhi V, de Bruijn HS, et al. Oncologic Photodynamic Therapy: Basic Principles, Current Clinical Status and Future Directions[J]. Cancers (Basel), 2017, 9(2):19. doi: 10.3390/cancers9020019.
doi: 10.3390/cancers9020019
|
[9] |
李步洪, 陈天龙, 林立, 等. 光动力疗法基础研究与临床应用的新进展[J]. 中国激光, 2022, 49(5):3-19. doi: 10.3788/CJL202249.0507101.
doi: 10.3788/CJL202249.0507101
|
[10] |
Railkar R, Krane LS, Li QQ, et al. Epidermal Growth Factor Receptor (EGFR)-targeted Photoimmunotherapy (PIT) for the Treatment of EGFR-expressing Bladder Cancer[J]. Mol Cancer Ther, 2017, 16(10):2201-2214. doi: 10.1158/1535-7163.MCT-16-0924.
doi: 10.1158/1535-7163.MCT-16-0924
pmid: 28619755
|
[11] |
Mitsunaga M, Ogawa M, Kosaka N, et al. Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules[J]. Nat Med, 2011, 17(12):1685-1691. doi: 10.1038/nm.2554.
doi: 10.1038/nm.2554
pmid: 22057348
|
[12] |
Paraboschi I, Turnock S, Kramer-Marek G, et al. Near-InfraRed PhotoImmunoTherapy (NIR-PIT) for the local control of solid cancers: Challenges and potentials for human applications[J]. Crit Rev Oncol Hematol, 2021, 161:103325. doi: 10.1016/j.critrevonc.2021.103325.
doi: 10.1016/j.critrevonc.2021.103325
|
[13] |
Nath S, Pigula M, Khan AP, et al. Flow-induced Shear Stress Confers Resistance to Carboplatin in an Adherent Three-Dimensional Model for Ovarian Cancer: A Role for EGFR-Targeted Photoimmunotherapy Informed by Physical Stress[J]. J Clin Med, 2020, 9(4):924. doi: 10.3390/jcm9040924.
doi: 10.3390/jcm9040924
|
[14] |
Nath S, Saad MA, Pigula M, et al. Photoimmunotherapy of Ovarian Cancer: A Unique Niche in the Management of Advanced Disease[J]. Cancers (Basel), 2019, 11(12):1887. doi: 10.3390/cancers11121887.
doi: 10.3390/cancers11121887
|
[15] |
Harada T, Nakamura Y, Sato K, et al. Near-infrared photoimmunotherapy with galactosyl serum albumin in a model of diffuse peritoneal disseminated ovarian cancer[J]. Oncotarget, 2016, 7(48):79408-79416. doi: 10.18632/oncotarget.12710.
doi: 10.18632/oncotarget.12710
pmid: 27765903
|
[16] |
Sato K, Hanaoka H, Watanabe R, et al. Near infrared photoimmunotherapy in the treatment of disseminated peritoneal ovarian cancer[J]. Mol Cancer Ther, 2015, 14(1):141-150. doi: 10.1158/1535-7163.MCT-14-0658.
doi: 10.1158/1535-7163.MCT-14-0658
pmid: 25416790
|
[17] |
Polikarpov DM, Campbell DH, Lund ME, et al. The feasibility of Miltuximab®-IRDye700DX-mediated photoimmunotherapy of solid tumors[J]. Photodiagnosis Photodyn Ther, 2020, 32:102064. doi: 10.1016/j.pdpdt.2020.102064.
doi: 10.1016/j.pdpdt.2020.102064
|
[18] |
Gaillard SL, Coleman RL. Identifying markers of immune response in ovarian cancer: does PD-L1 expression meet the mark?[J]. Ann Oncol, 2019, 30(7):1025-1028. doi: 10.1093/annonc/mdz166.
doi: S0923-7534(19)31250-5
pmid: 31987363
|
[19] |
Jin J, Sivakumar I, Mironchik Y, et al. PD-L1 near Infrared Photoimmunotherapy of Ovarian Cancer Model[J]. Cancers(Basel), 2022, 14(3):619. doi: 10.3390/cancers14030619.
doi: 10.3390/cancers14030619
|
[20] |
Taki S, Matsuoka K, Nishinaga Y, et al. Spatiotemporal depletion of tumor-associated immune checkpoint PD-L1 with near-infrared photoimmunotherapy promotes antitumor immunity[J]. J Immunother Cancer, 2021, 9(11):e003036. doi: 10.1136/jitc-2021-003036.
doi: 10.1136/jitc-2021-003036
|
[21] |
Poursheikhani A, Yousefi H, Tavakoli-Bazzaz J, et al. EGFR Blockade Reverses Cisplatin Resistance in Human Epithelial Ovarian Cancer Cells[J]. Iran Biomed J, 2020, 24(6):370-378. doi: 10.29252/ibj.24.6.365.
doi: 10.29252/ibj.24.6.365
|
[22] |
Furusawa A, Choyke PL, Kobayashi H. NIR-PIT: Will it become a standard cancer treatment?[J]. Front Oncol, 2022, 12:1008162. doi: 10.3389/fonc.2022.1008162.
doi: 10.3389/fonc.2022.1008162
|
[23] |
Liang BJ, Pigula M, Baglo Y, et al. Breaking the selectivity-uptake trade-off of photoimmunoconjugates with nanoliposomal irinotecan for synergistic multi-tier cancer targeting[J]. J Nanobiotechnology, 2020, 18(1):1. doi: 10.1186/s12951-019-0560-5.
doi: 10.1186/s12951-019-0560-5
|
[24] |
Hongrapipat J, Kopecková P, Liu J, et al. Combination chemotherapy and photodynamic therapy with fab′ fragment targeted HPMA copolymer conjugates in human ovarian carcinoma cells[J]. Mol Pharm, 2008, 5(5):696-709. doi: 10.1021/mp800006e.
doi: 10.1021/mp800006e
|
[25] |
Rizvi I, Dinh TA, Yu W, et al. Photoimmunotherapy and irradiance modulation reduce chemotherapy cycles and toxicity in a murine model for ovarian carcinomatosis: perspective and results[J]. Isr J Chem, 2012, 52(8/9):776-787. doi: 10.1002/ijch.201200016.
doi: 10.1002/ijch.201200016
|