国际妇产科学杂志 ›› 2023, Vol. 50 ›› Issue (2): 132-137.doi: 10.12280/gjfckx.20220695
收稿日期:
2022-08-31
出版日期:
2023-04-15
发布日期:
2023-04-24
通讯作者:
吴瑞瑾
E-mail:wurj@zju.edu.cn
MAO Jing-xia, PAN Yong-chao, WU Rui-jin()
Received:
2022-08-31
Published:
2023-04-15
Online:
2023-04-24
Contact:
WU Rui-jin
E-mail:wurj@zju.edu.cn
摘要:
多囊卵巢综合征(polycystic ovary syndrome,PCOS)是女性常见的内分泌疾病,与代谢紊乱、排卵障碍等临床表现密切相关,其发病机制仍未明确。越来越多的研究认为胚胎发育时期是PCOS疾病起源的关键阶段。众多PCOS遗传基因具有参与激素合成、调节糖脂代谢途径等功能,不同妊娠时期基因的表达模式和表观遗传调控可能也与胎儿卵巢发育相关。母体妊娠期激素水平改变、暴露于环境内分泌干扰物、不健康的生活方式和代谢紊乱,可能通过干扰下丘脑-垂体-卵巢轴和改变相关基因表达水平,诱导子代出现高雄激素血症、胰岛素抵抗等内分泌紊乱特征与卵泡发育障碍等,增加PCOS患病风险。综述PCOS易感基因及表观遗传调控方式,探索宫内环境改变诱导胚胎发育重编程的机制,为今后研究PCOS的发病机制与临床诊疗提供新视角。
毛晶霞, 潘永超, 吴瑞瑾. 胚胎发育与多囊卵巢综合征疾病起源的研究进展[J]. 国际妇产科学杂志, 2023, 50(2): 132-137.
MAO Jing-xia, PAN Yong-chao, WU Rui-jin. Research Progress of Embryonic Development and the Origin of Polycystic Ovary Syndrome[J]. Journal of International Obstetrics and Gynecology, 2023, 50(2): 132-137.
[1] |
Sanchez-Garrido MA, Tena-Sempere M. Metabolic dysfunction in polycystic ovary syndrome: Pathogenic role of androgen excess and potential therapeutic strategies[J]. Mol Metab, 2020, 35:100937. doi: 10.1016/j.molmet.2020.01.001.
doi: 10.1016/j.molmet.2020.01.001 |
[2] |
Zou K, Ding G, Huang H. Advances in research into gamete and embryo-fetal origins of adult diseases[J]. Sci China Life Sci, 2019, 62(3):360-368. doi: 10.1007/s11427-018-9427-4.
doi: 10.1007/s11427-018-9427-4 pmid: 30685828 |
[3] |
Parker J, O′Brien C, Gersh FL. Developmental origins and transgenerational inheritance of polycystic ovary syndrome[J]. Aust N Z J Obstet Gynaecol, 2021, 61(6):922-926. doi: 10.1111/ajo.13420.
doi: 10.1111/ajo.13420 |
[4] |
Chaudhary H, Patel J, Jain NK, et al. The role of polymorphism in various potential genes on polycystic ovary syndrome susceptibility and pathogenesis[J]. J Ovarian Res, 2021, 14(1):125. doi: 10.1186/s13048-021-00879-w.
doi: 10.1186/s13048-021-00879-w pmid: 34563259 |
[5] |
Chen ZJ, Zhao H, He L, et al. Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3[J]. Nat Genet, 2011, 43(1):55-59. doi: 10.1038/ng.732.
doi: 10.1038/ng.732 |
[6] |
Qin L, Zhao S, Yang P, et al. Variation analysis of anti-Müllerian hormone gene in Chinese women with polycystic ovary syndrome[J]. Endocrine, 2021, 72(1):287-293. doi: 10.1007/s12020-020-02538-4.
doi: 10.1007/s12020-020-02538-4 pmid: 33169290 |
[7] |
Hartanti MD, Rosario R, Hummitzsch K, et al. Could perturbed fetal development of the ovary contribute to the development of polycystic ovary syndrome in later life?[J]. PLoS One, 2020, 15(2):e0229351.doi:org/10.1371/journal.pone.0229351.
doi: org/10.1371/journal.pone.0229351 |
[8] |
Idicula-Thomas S, Gawde U, Bhaye S, et al. Meta-analysis of gene expression profiles of lean and obese PCOS to identify differentially regulated pathways and risk of comorbidities[J]. Comput Struct Biotechnol J, 2020, 18:1735-1745. doi: 10.1016/j.csbj.2020.06.023.
doi: 10.1016/j.csbj.2020.06.023 |
[9] |
Sagvekar P, Kumar P, Mangoli V, et al. DNA methylome profiling of granulosa cells reveals altered methylation in genes regulating vital ovarian functions in polycystic ovary syndrome[J]. Clin Epigenetics, 2019, 11(1):61. doi: 10.1186/s13148-019-0657-6.
doi: 10.1186/s13148-019-0657-6 pmid: 30975191 |
[10] |
Mimouni NEH, Paiva I, Barbotin AL, et al. Polycystic ovary syndrome is transmitted via a transgenerational epigenetic process[J]. Cell Metab, 2021, 33(3):513-530.e8. doi: 10.1016/j.cmet.2021.01.004.
doi: 10.1016/j.cmet.2021.01.004 pmid: 33539777 |
[11] |
Li Y, Zhang J, Liu YD, et al. Long non-coding RNA TUG1 and its molecular mechanisms in polycystic ovary syndrome[J]. RNA Biol, 2020, 17(12):1798-1810. doi: 10.1080/15476286.2020.1783850.
doi: 10.1080/15476286.2020.1783850 |
[12] |
Zhao J, Huang J, Geng X, et al. Polycystic Ovary Syndrome: Novel and Hub lncRNAs in the Insulin Resistance-Associated lncRNA-mRNA Network[J]. Front Genet, 2019, 10:772. doi: 10.3389/fgene.2019.00772.
doi: 10.3389/fgene.2019.00772 pmid: 31507635 |
[13] |
Andræ F, Abbott D, Stridsklev S, et al. Sustained Maternal Hyperandrogenism During PCOS Pregnancy Reduced by Metformin in Non-obese Women Carrying a Male Fetus[J]. J Clin Endocrinol Metab, 2020, 105(12):3762-3770. doi: 10.1210/clinem/dgaa605.
doi: 10.1210/clinem/dgaa605 |
[14] |
Tehrani FR, Noroozzadeh M, Zahediasl S, et al. Introducing a rat model of prenatal androgen-induced polycystic ovary syndrome in adulthood[J]. Exp Physiol, 2014, 99(5):792-801. doi: 10.1113/expphysiol.2014.078055.
doi: 10.1113/expphysiol.2014.078055 pmid: 24532600 |
[15] |
Silva MSB, Desroziers E, Hessler S, et al. Activation of arcuate nucleus GABA neurons promotes luteinizing hormone secretion and reproductive dysfunction: Implications for polycystic ovary syndrome[J]. EBioMedicine, 2019, 44:582-596. doi: 10.1016/j.ebiom.2019. 05.065.
doi: S2352-3964(19)30373-1 pmid: 31178425 |
[16] |
Barsky M, Merkison J, Hosseinzadeh P, et al. Fetal programming of polycystic ovary syndrome: Effects of androgen exposure on prenatal ovarian development[J]. J Steroid Biochem Mol Biol, 2021, 207:105830. doi: 10.1016/j.jsbmb.2021.105830.
doi: 10.1016/j.jsbmb.2021.105830 |
[17] |
Guo X, Puttabyatappa M, Thompson RC, et al. Developmental Programming: Contribution of Epigenetic Enzymes to Antral Follicular Defects in the Sheep Model of PCOS[J]. Endocrinology, 2019, 160(10):2471-2484. doi: 10.1210/en.2019-00389.
doi: 10.1210/en.2019-00389 pmid: 31398247 |
[18] |
Bertoldo MJ, Caldwell ASL, Riepsamen AH, et al. A Hyperandrogenic Environment Causes Intrinsic Defects That Are Detrimental to Follicular Dynamics in a PCOS Mouse Model[J]. Endocrinology, 2019, 160(3):699-715. doi: 10.1210/en.2018-00966.
doi: 10.1210/en.2018-00966 pmid: 30657917 |
[19] |
Zhou S, Lu D, Wen S, et al. Elevated Anti-Müllerian Hormone Levels in Newborns of Women with Polycystic Ovary Syndrome: a Systematic Review and Meta-analysis Based on Observational Studies[J]. Reprod Sci, 2022, 29(1):301-311. doi: 10.1007/s43032-021-00652-w.
doi: 10.1007/s43032-021-00652-w |
[20] |
Tata B, Mimouni NEH, Barbotin AL, et al. Elevated prenatal anti-Müllerian hormone reprograms the fetus and induces polycystic ovary syndrome in adulthood[J]. Nat Med, 2018, 24(6):834-846. doi: 10.1038/s41591-018-0035-5.
doi: 10.1038/s41591-018-0035-5 pmid: 29760445 |
[21] |
Dewailly D, Barbotin AL, Dumont A, et al. Role of Anti-Müllerian Hormone in the Pathogenesis of Polycystic Ovary Syndrome[J]. Front Endocrinol (Lausanne), 2020, 11:641. doi: 10.3389/fendo.2020.00641.
doi: 10.3389/fendo.2020.00641 |
[22] |
Rutkowska AZ, Diamanti-Kandarakis E. Polycystic ovary syndrome and environmental toxins[J]. Fertil Steril, 2016, 106(4):948-958. doi: 10.1016/j.fertnstert.2016.08.031.
doi: 10.1016/j.fertnstert.2016.08.031 pmid: 27559705 |
[23] |
Huang R, Li J, Liao M, et al. Combinational exposure to Bisphenol A and a high-fat diet causes trans-generational Malfunction of the female reproductive system in mice[J]. Mol Cell Endocrinol, 2022, 541:111507. doi: 10.1016/j.mce.2021.111507.
doi: 10.1016/j.mce.2021.111507 |
[24] |
Shi J, Liu C, Chen M, et al. The interference effects of bisphenol A on the synthesis of steroid hormones in human ovarian granulosa cells[J]. Environ Toxicol, 2021, 36(4):665-674. doi: 10.1002/tox.23070.
doi: 10.1002/tox.23070 pmid: 33258555 |
[25] |
Manikkam M, Tracey R, Guerrero-Bosagna C, et al. Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations[J]. PLoS One, 2013, 8(1):e55387. doi: 10.1371/journal.pone.0055387.
doi: 10.1371/journal.pone.0055387 |
[26] |
Hlisníková H, Petrovičová I, Kolena B, et al. Effect of prenatal phthalate exposure on the association of maternal hormone levels during early pregnancy and reproductive markers in infants at the age of 3 months[J]. Reprod Toxicol, 2021, 102:35-42. doi: 10.1016/j.reprotox.2021.04.001.
doi: 10.1016/j.reprotox.2021.04.001 pmid: 33838276 |
[27] |
Gill S, Brehm E, Leon K, et al. Prenatal exposure to an environmentally relevant phthalate mixture alters ovarian steroidogenesis and folliculogenesis in the F1 generation of adult female mice[J]. Reprod Toxicol, 2021, 106:25-31. doi: 10.1016/j.reprotox.2021.09.013.
doi: 10.1016/j.reprotox.2021.09.013 pmid: 34597818 |
[28] |
Fan Y, Qin Y, Chen M, et al. Prenatal low-dose DEHP exposure induces metabolic adaptation and obesity: Role of hepatic thiamine metabolism[J]. J Hazard Mater, 2020, 385:121534. doi: 10.1016/j.jhazmat.2019.121534.
doi: 10.1016/j.jhazmat.2019.121534 |
[29] |
Garruti G, Depalo R, De Angelis M. Weighing the Impact of Diet and Lifestyle on Female Reproductive Function[J]. Curr Med Chem, 2019, 26(19):3584-3592. doi: 10.2174/0929867324666170518101008.
doi: 10.2174/0929867324666170518101008 pmid: 28521685 |
[30] |
Katulski K, Czyzyk A, Podkowa N, et al. Clinical and hormonal features of women with polycystic ovary syndrome living in rural and urban areas[J]. Ann Agric Environ Med, 2017, 24(3):522-526. doi: 10.5604/12321966.1227642.
doi: 10.5604/12321966.1227642 |
[31] |
Xu M, Che L, Yang Z, et al. Effect of High Fat Dietary Intake during Maternal Gestation on Offspring Ovarian Health in a Pig Model[J]. Nutrients, 2016, 8(8):498. doi: 10.3390/nu8080498.
doi: 10.3390/nu8080498 |
[32] |
Cheong Y, Sadek KH, Bruce KD, et al. Diet-induced maternal obesity alters ovarian morphology and gene expression in the adult mouse offspring[J]. Fertil Steril, 2014, 102(3):899-907. doi: 10.1016/j.fertnstert.2014.06.015.
doi: 10.1016/j.fertnstert.2014.06.015 pmid: 25063726 |
[33] |
Carbone L, Davis BA, Fei SS, et al. Synergistic Effects of Hyperandrogenemia and Obesogenic Western-style Diet on Transcription and DNA Methylation in Visceral Adipose Tissue of Nonhuman Primates[J]. Sci Rep, 2019, 9(1):19232. doi: 10.1038/s41598-019-55291-8.
doi: 10.1038/s41598-019-55291-8 pmid: 31848372 |
[34] |
Merhi Z, Du XQ, Charron MJ. Perinatal exposure to high dietary advanced glycation end products affects the reproductive system in female offspring in mice[J]. Mol Hum Reprod, 2020, 26(8):615-623. doi: 10.1093/molehr/gaaa046.
doi: 10.1093/molehr/gaaa046 pmid: 32609365 |
[35] |
Azhary JMK, Harada M, Kunitomi C, et al. Androgens Increase Accumulation of Advanced Glycation End Products in Granulosa Cells by Activating ER Stress in PCOS[J]. Endocrinology, 2020, 161(2):bqaa015. doi: 10.1210/endocr/bqaa015.
doi: 10.1210/endocr/bqaa015 |
[36] |
Puttabyatappa M, Padmanabhan V. Developmental Programming of Ovarian Functions and Dysfunctions[J]. Vitam Horm, 2018, 107:377-422. doi: 10.1016/bs.vh.2018.01.017.
doi: S0083-6729(18)30017-7 pmid: 29544638 |
[37] |
Liu Y, Liu J, Gao Y, et al. The Body Composition in Early Pregnancy is Associated with the Risk of Development of Gestational Diabetes Mellitus Late During the Second Trimester[J]. Diabetes Metab Syndr Obes, 2020, 13:2367-2374. doi: 10.2147/DMSO.S245155.
doi: 10.2147/DMSO.S245155 |
[38] |
Grunnet LG, Hansen S, Hjort L, et al. Adiposity, Dysmetabolic Traits, and Earlier Onset of Female Puberty in Adolescent Offspring of Women With Gestational Diabetes Mellitus: A Clinical Study Within the Danish National Birth Cohort[J]. Diabetes Care, 2017, 40(12):1746-1755. doi: 10.2337/dc17-0514.
doi: 10.2337/dc17-0514 pmid: 29038315 |
[39] |
Szabo AJ. Transferred maternal fatty acids stimulate fetal adipogenesis and lead to neonatal and adult obesity[J]. Med Hypotheses, 2019, 122:82-88. doi: 10.1016/j.mehy.2018.10.022.
doi: S0306-9877(18)30717-5 pmid: 30593430 |
[40] |
Hu M, Zhang Y, Guo X, et al. Perturbed ovarian and uterine glucocorticoid receptor signaling accompanies the balanced regulation of mitochondrial function and NFκB-mediated inflammation under conditions of hyperandrogenism and insulin resistance[J]. Life Sci, 2019, 232:116681. doi: 10.1016/j.lfs.2019.116681.
doi: 10.1016/j.lfs.2019.116681 |
[1] | 徐淑颖, 徐海鹏, 王丽娜, 张阳. 锌与多囊卵巢综合征的关系[J]. 国际妇产科学杂志, 2025, 52(2): 217-221. |
[2] | 闫辉波, 张琳. 1990—2021年中国及全球多囊卵巢综合征疾病负担及预测分析[J]. 国际妇产科学杂志, 2025, 52(2): 228-233. |
[3] | 袁海宁, 牟珍妮, 张江琳, 李恒兵, 张云洁, 孙振高. 高龄卵母细胞质量与端粒酶的关联及机制[J]. 国际妇产科学杂志, 2025, 52(1): 57-60. |
[4] | 张栋, 王筝, 李凯, 卞文丽, 高志华. 非妊娠期重度自发性卵巢过度刺激综合征一例[J]. 国际妇产科学杂志, 2025, 52(1): 79-83. |
[5] | 胡蝶, 任佳杰, 刘佳宁, 冯晓玲. MAPK信号通路在PCOS中的作用机制及中药单体的药理研究进展[J]. 国际妇产科学杂志, 2024, 51(6): 684-691. |
[6] | 李东楠, 向蓉, 汪海洋, 孙淼. 卵巢颗粒细胞凋亡在多囊卵巢综合征中的调控机制及中医药干预研究进展[J]. 国际妇产科学杂志, 2024, 51(6): 692-697. |
[7] | 李晨曦, 范梦笑, 吴林玲, 窦真, 贾佳, 孙娅瑄. 高雄激素诱导多囊卵巢综合征神经内分泌紊乱的研究进展[J]. 国际妇产科学杂志, 2024, 51(6): 698-702. |
[8] | 王雅慧, 王艳, 王艳, 裴飞. 胎儿生长受限的病因及对患儿远期健康的影响[J]. 国际妇产科学杂志, 2024, 51(2): 152-156. |
[9] | 孙艺文, 熊可, 张梓絮, 翁雅婧, 王勇. 双酚A对多囊卵巢综合征发病机制的影响[J]. 国际妇产科学杂志, 2023, 50(6): 601-605. |
[10] | 李振英, 孙晓彤, 邢广阳, 李晶晶, 柳婷婷, 张一凡. 鞘脂代谢与妇科良恶性疾病的研究进展[J]. 国际妇产科学杂志, 2023, 50(6): 649-654. |
[11] | 胡梦双, 梅靖. 胎儿肢体-体壁综合征一例并文献复习[J]. 国际妇产科学杂志, 2023, 50(5): 519-522. |
[12] | 徐惠, 解秀珍. 多囊卵巢综合征患者负性情绪的研究进展[J]. 国际妇产科学杂志, 2023, 50(5): 530-534. |
[13] | 寇丽辉, 宋殿荣, 郭洁. 负性情绪对多囊卵巢综合征不孕症的影响[J]. 国际妇产科学杂志, 2023, 50(5): 535-539. |
[14] | 高雅, 鲁娣, 宋殿荣. 抗苗勒管激素在多囊卵巢综合征发病及诊治中的作用[J]. 国际妇产科学杂志, 2023, 50(5): 540-544. |
[15] | 王磊, 张宁. 肠道微生物群失调对多囊卵巢综合征的影响[J]. 国际妇产科学杂志, 2023, 50(3): 256-260. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||