[1] |
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5):1060-1072. doi: 10.1016/j.cell.2012.03.042.
doi: 10.1016/j.cell.2012.03.042
pmid: 22632970
|
[2] |
Chen X, Yu C, Kang R, et al. Iron Metabolism in Ferroptosis[J]. Front Cell Dev Biol, 2020, 8:590226. doi: 10.3389/fcell.2020.590226.
doi: 10.3389/fcell.2020.590226
|
[3] |
Bai Y, Meng L, Han L, et al. Lipid storage and lipophagy regulates ferroptosis[J]. Biochem Biophys Res Commun, 2019, 508(4):997-1003. doi: 10.1016/j.bbrc.2018.12.039.
doi: 10.1016/j.bbrc.2018.12.039
|
[4] |
Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal[J]. Oxid Med Cell Longev, 2014, 2014:360438. doi: 10.1155/2014/360438.
doi: 10.1155/2014/360438
|
[5] |
Tang D, Kroemer G. Ferroptosis[J]. Curr Biol, 2020, 30(21):R1292-R1297. doi: 10.1016/j.cub.2020.09.068.
doi: 10.1016/j.cub.2020.09.068
|
[6] |
Qiu Y, Cao Y, Cao W, et al. The Application of Ferroptosis in Diseases[J]. Pharmacol Res, 2020, 159:104919. doi: 10.1016/j.phrs.2020.104919.
doi: 10.1016/j.phrs.2020.104919
|
[7] |
Zhou B, Liu J, Kang R, et al. Ferroptosis is a type of autophagy-dependent cell death[J]. Semin Cancer Biol, 2020, 66:89-100. doi: 10.1016/j.semcancer.2019.03.002.
doi: S1044-579X(19)30006-9
pmid: 30880243
|
[8] |
Xia X, Fan X, Zhao M, et al. The Relationship between Ferroptosis and Tumors: A Novel Landscape for Therapeutic Approach[J]. Curr Gene Ther, 2019, 19(2):117-124. doi: 10.2174/1566523219666190628152137.
doi: 10.2174/1566523219666190628152137
pmid: 31264548
|
[9] |
Basuli D, Tesfay L, Deng Z, et al. Iron addiction: a novel therapeutic target in ovarian cancer[J]. Oncogene, 2017, 36(29):4089-4099. doi: 10.1038/onc.2017.11.
doi: 10.1038/onc.2017.11
pmid: 28319068
|
[10] |
Tesfay L, Paul BT, Konstorum A, et al. Stearoyl-CoA Desaturase 1 Protects Ovarian Cancer Cells from Ferroptotic Cell Death[J]. Cancer Res, 2019, 79(20):5355-5366. doi: 10.1158/0008-5472.CAN-19-0369.
doi: 10.1158/0008-5472.CAN-19-0369
pmid: 31270077
|
[11] |
Xuan Y, Wang H, Yung MM, et al. SCD1/FADS2 fatty acid desaturases equipoise lipid metabolic activity and redox-driven ferroptosis in ascites-derived ovarian cancer cells[J]. Theranostics, 2022, 12(7):3534-3552. doi: 10.7150/thno.70194.
doi: 10.7150/thno.70194
pmid: 35547771
|
[12] |
Zou Y, Henry WS, Ricq EL, et al. Plasticity of ether lipids promotes ferroptosis susceptibility and evasion[J]. Nature, 2020, 585(7826):603-608. doi: 10.1038/s41586-020-2732-8.
doi: 10.1038/s41586-020-2732-8
|
[13] |
Kang R, Kroemer G, Tang D. The tumor suppressor protein p53 and the ferroptosis network[J]. Free Radic Biol Med, 2019, 133:162-168. doi: 10.1016/j.freeradbiomed.2018.05.074.
doi: 10.1016/j.freeradbiomed.2018.05.074
|
[14] |
Liu J, Zhang C, Wang J, et al. The Regulation of Ferroptosis by Tumor Suppressor p53 and its Pathway[J]. Int J Mol Sci, 2020, 21(21):8387. doi: 10.3390/ijms21218387.
doi: 10.3390/ijms21218387
|
[15] |
Zhang Y, Xia M, Zhou Z, et al. p53 Promoted Ferroptosis in Ovarian Cancer Cells Treated with Human Serum Incubated-Superparamagnetic Iron Oxides[J]. Int J Nanomedicine, 2021, 16:283-296. doi: 10.2147/IJN.S282489.
doi: 10.2147/IJN.S282489
|
[16] |
Zanconato F, Cordenonsi M, Piccolo S. YAP/TAZ at the Roots of Cancer[J]. Cancer Cell, 2016, 29(6):783-803. doi: 10.1016/j.ccell.2016.05.005.
doi: S1535-6108(16)30210-0
pmid: 27300434
|
[17] |
Dey A, Varelas X, Guan KL. Targeting the Hippo pathway in cancer, fibrosis, wound healing and regenerative medicine[J]. Nat Rev Drug Discov, 2020, 19(7):480-494. doi: 10.1038/s41573-020-0070-z.
doi: 10.1038/s41573-020-0070-z
pmid: 32555376
|
[18] |
Wu J, Minikes AM, Gao M, et al. Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling[J]. Nature, 2019, 572(7769):402-406. doi: 10.1038/s41586-019-1426-6.
doi: 10.1038/s41586-019-1426-6
|
[19] |
Yang WH, Lin CC, Wu J, et al. The Hippo Pathway Effector YAP Promotes Ferroptosis via the E3 Ligase SKP2[J]. Mol Cancer Res, 2021, 19(6):1005-1014. doi: 10.1158/1541-7786.MCR-20-0534.
doi: 10.1158/1541-7786.MCR-20-0534
|
[20] |
Yang WH, Huang Z, Wu J, et al. A TAZ-ANGPTL4-NOX2 Axis Regulates Ferroptotic Cell Death and Chemoresistance in Epithelial Ovarian Cancer[J]. Mol Cancer Res, 2020, 18(1):79-90. doi: 10.1158/1541-7786.MCR-19-0691.
doi: 10.1158/1541-7786.MCR-19-0691
|
[21] |
Zhu P, Tan MJ, Huang RL, et al. Angiopoietin-like 4 protein elevates the prosurvival intracellular O2(-):H2O2 ratio and confers anoikis resistance to tumors[J]. Cancer Cell, 2011, 19(3):401-415. doi: 10.1016/j.ccr.2011.01.018.
doi: 10.1016/j.ccr.2011.01.018
pmid: 21397862
|
[22] |
Fukai T, Ushio-Fukai M. Cross-Talk between NADPH Oxidase and Mitochondria: Role in ROS Signaling and Angiogenesis[J]. Cells, 2020, 9(8):1849. doi: 10.3390/cells9081849.
doi: 10.3390/cells9081849
|
[23] |
Li HW, Liu MB, Jiang X, et al. GALNT14 regulates ferroptosis and apoptosis of ovarian cancer through the EGFR/mTOR pathway[J]. Future Oncol, 2022, 18(2):149-161. doi: 10.2217/fon-2021-0883.
doi: 10.2217/fon-2021-0883
|
[24] |
Cheng Q, Bao L, Li M, et al. Erastin synergizes with cisplatin via ferroptosis to inhibit ovarian cancer growth in vitro and in vivo[J]. J Obstet Gynaecol Res, 2021, 47(7):2481-2491. doi: 10.1111/jog.14779.
doi: 10.1111/jog.14779
|
[25] |
Wang Y, Zhao G, Condello S, et al. Frizzled-7 Identifies Platinum-Tolerant Ovarian Cancer Cells Susceptible to Ferroptosis[J]. Cancer Res, 2021, 81(2):384-399. doi: 10.1158/0008-5472.CAN-20-1488.
doi: 10.1158/0008-5472.CAN-20-1488
pmid: 33172933
|
[26] |
Chan DW, Yung MM, Chan YS, et al. MAP30 protein from Momordica charantia is therapeutic and has synergic activity with cisplatin against ovarian cancer in vivo by altering metabolism and inducing ferroptosis[J]. Pharmacol Res, 2020, 161:105157. doi: 10.1016/j.phrs.2020.105157.
doi: 10.1016/j.phrs.2020.105157
|
[27] |
Hong T, Lei G, Chen X, et al. PARP inhibition promotes ferroptosis via repressing SLC7A11 and synergizes with ferroptosis inducers in BRCA-proficient ovarian cancer[J]. Redox Biol, 2021, 42:101928. doi: 10.1016/j.redox.2021.101928.
doi: 10.1016/j.redox.2021.101928
|
[28] |
Gasimli K, Raab M, Tahmasbi Rad M, et al. Sequential Targeting of PLK1 and PARP1 Reverses the Resistance to PARP Inhibitors and Enhances Platin-Based Chemotherapy in BRCA-Deficient High-Grade Serous Ovarian Cancer with KRAS Amplification[J]. Int J Mol Sci, 2022, 23(18):10892. doi: 10.3390/ijms231810892.
doi: 10.3390/ijms231810892
|
[29] |
Zou W, Wolchok JD, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations[J]. Sci Transl Med, 2016, 8(328):328rv4. doi: 10.1126/scitranslmed.aad7118.
doi: 10.1126/scitranslmed
|
[30] |
Wang W, Green M, Choi JE, et al. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy[J]. Nature, 2019, 569(7755):270-274. doi: 10.1038/s41586-019-1170-y.
doi: 10.1038/s41586-019-1170-y
|