[1] |
Chen J, Wei Z, Fu K, et al. Non-apoptotic cell death in ovarian cancer: Treatment, resistance and prognosis[J]. Biomed Pharmacother, 2022, 150:112929. doi: 10.1016/j.biopha.2022.112929.
|
[2] |
Zhang T, Zheng S, Liu Y, et al. DNA damage response and PD-1/PD-L1 pathway in ovarian cancer[J]. DNA Repair(Amst), 2021, 102:103112. doi: 10.1016/j.dnarep.2021.103112.
|
[3] |
Yang Y, Zhao T, Chen Q, et al. Nanomedicine Strategies for Heating "Cold" Ovarian Cancer (OC): Next Evolution in Immunotherapy of OC[J]. Adv Sci(Weinh), 2022, 9(28):e2202797. doi: 10.1002/advs.202202797.
|
[4] |
Wanderley C, Correa TS, Scaranti M, et al. Targeting PARP1 to Enhance Anticancer Checkpoint Immunotherapy Response: Rationale and Clinical Implications[J]. Front Immunol, 2022, 13:816642. doi: 10.3389/fimmu.2022.816642.
|
[5] |
Majidpoor J, Mortezaee K. The efficacy of PD-1/PD-L1 blockade in cold cancers and future perspectives[J]. Clin Immunol, 2021, 226:108707. doi: 10.1016/j.clim.2021.108707.
|
[6] |
Świderska J, Kozłowski M, Kwiatkowski S, et al. Immunotherapy of Ovarian Cancer with Particular Emphasis on the PD-1/PDL-1 as Target Points[J]. Cancers(Basel), 2021, 13(23):6063. doi: 10.3390/cancers13236063.
|
[7] |
Nagasaki J, Togashi Y. A variety of ′exhausted′ T cells in the tumor microenvironment[J]. Int Immunol, 2022, 34(11):563-570. doi: 10.1093/intimm/dxac013.
|
[8] |
Khatoon E, Parama D, Kumar A, et al. Targeting PD-1/PD-L1 axis as new horizon for ovarian cancer therapy[J]. Life Sci, 2022, 306:120827. doi: 10.1016/j.lfs.2022.120827.
|
[9] |
Shiravand Y, Khodadadi F, Kashani SMA, et al. Immune Checkpoint Inhibitors in Cancer Therapy[J]. Curr Oncol, 2022, 29(5):3044-3060. doi: 10.3390/curroncol29050247.
pmid: 35621637
|
[10] |
Matulonis UA, Shapira-Frommer R, Santin AD, et al. Antitumor activity and safety of pembrolizumab in patients with advanced recurrent ovarian cancer: results from the phase II KEYNOTE-100 study[J]. Ann Oncol, 2019, 30(7):1080-1087. doi: 10.1093/annonc/mdz135.
pmid: 31987374
|
[11] |
Zhu J, Yan L, Wang Q. Efficacy of PD-1/PD-L1 inhibitors in ovarian cancer: a single-arm meta-analysis[J]. J Ovarian Res, 2021, 14(1):112. doi: 10.1186/s13048-021-00862-5.
pmid: 34454562
|
[12] |
Xie T, Dickson KA, Yee C, et al. Targeting Homologous Recombination Deficiency in Ovarian Cancer with PARP Inhibitors: Synthetic Lethal Strategies That Impact Overall Survival[J]. Cancers (Basel), 2022, 14(19):4621. doi: 10.3390/cancers14194621.
|
[13] |
Lau CH, Seow KM, Chen KH. The Molecular Mechanisms of Actions, Effects, and Clinical Implications of PARP Inhibitors in Epithelial Ovarian Cancers: A Systematic Review[J]. Int J Mol Sci, 2022, 23(15):8125. doi: 10.3390/ijms23158125.
|
[14] |
Musacchio L, Cicala CM, Camarda F, et al. Combining PARP inhibition and immune checkpoint blockade in ovarian cancer patients: a new perspective on the horizon?[J]. ESMO Open, 2022, 7(4):100536. doi: 10.1016/j.esmoop.2022.100536.
|
[15] |
Ou L, Zhang A, Cheng Y, et al. The cGAS-STING Pathway: A Promising Immunotherapy Target[J]. Front Immunol, 2021, 12:795048. doi: 10.3389/fimmu.2021.795048.
|
[16] |
Gupta T, Vinayak S, Telli M. Emerging strategies: PARP inhibitors in combination with immune checkpoint blockade in BRCA1 and BRCA2 mutation-associated and triple-negative breast cancer[J]. Breast Cancer Res Treat, 2023, 197(1):51-56. doi: 10.1007/s10549-022-06780-4.
|
[17] |
Yu R, Zhu B, Chen D. Type I interferon-mediated tumor immunity and its role in immunotherapy[J]. Cell Mol Life Sci, 2022, 79(3):191. doi: 10.1007/s00018-022-04219-z.
pmid: 35292881
|
[18] |
Revythis A, Limbu A, Mikropoulos C, et al. Recent Insights into PARP and Immuno-Checkpoint Inhibitors in Epithelial Ovarian Cancer[J]. Int J Environ Res Public Health, 2022, 19(14):8577. doi: 10.3390/ijerph19148577.
|
[19] |
Banerjee S, Moore KN, Colombo N, et al. Maintenance olaparib for patients with newly diagnosed advanced ovarian cancer and a BRCA mutation (SOLO1/GOG 3004): 5-year follow-up of a randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet Oncol, 2021,22(12):1721-1731. doi: 10.1016/S1470- 2045(21)00531-3.
|
[20] |
Poveda A, Floquet A, Ledermann JA, et al. Olaparib tablets as maintenance therapy in patients with platinum-sensitive relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a final analysis of a double-blind, randomised, placebo-controlled, phase 3 trial[J]. Lancet Oncol, 2021,22(5):620-631. doi: 10.1016/S1470-2045(21)00073-5.
|
[21] |
Li H, Liu ZY, Wu N, et al. PARP inhibitor resistance: the underlying mechanisms and clinical implications[J]. Mol Cancer, 2020, 19(1):107. doi: 10.1186/s12943-020-01227-0.
pmid: 32563252
|
[22] |
Chardin L, Leary A. Immunotherapy in Ovarian Cancer: Thinking Beyond PD-1/PD-L1[J]. Front Oncol, 2021, 11:795547. doi: 10.3389/fonc.2021.795547.
|
[23] |
Maiorano BA, Lorusso D, Maiorano M, et al. The Interplay between PARP Inhibitors and Immunotherapy in Ovarian Cancer: The Rationale behind a New Combination Therapy[J]. Int J Mol Sci, 2022, 23(7):3871. doi: 10.3390/ijms23073871.
|
[24] |
Scirocchi F, Strigari L, Di Filippo A, et al. Soluble PD-L1 as a Prognostic Factor for Immunotherapy Treatment in Solid Tumors: Systematic Review and Meta-Analysis[J]. Int J Mol Sci, 2022, 23(22):14496. doi: 10.3390/ijms232214496.
|
[25] |
Wu Z, Cui P, Tao H, et al. The Synergistic Effect of PARP Inhibitors and Immune Checkpoint Inhibitors[J]. Clin Med Insights Oncol, 2021, 15:1179554921996288. doi: 10.1177/1179554921996288.
|
[26] |
Zhang Y, Cui Q, Xu M, et al. Current Advances in PD-1/PD-L1 Blockade in Recurrent Epithelial Ovarian Cancer[J]. Front Immunol, 2022, 13:901772. doi: 10.3389/fimmu.2022.901772.
|
[27] |
Huang JL, Chang YT, Hong ZY, et al. Targeting DNA Damage Response and Immune Checkpoint for Anticancer Therapy[J]. Int J Mol Sci, 2022, 23(6):3238. doi: 10.3390/ijms23063238.
|
[28] |
Batchu RB, Gruzdyn OV, Kolli BK, et al. IL-10 Signaling in the Tumor Microenvironment of Ovarian Cancer[J]. Adv Exp Med Biol, 2021, 1290:51-65. doi: 10.1007/978-3-030-55617-4_3.
pmid: 33559854
|
[29] |
Yélamos J, Moreno-Lama L, Jimeno J, et al. Immunomodulatory Roles of PARP-1 and PARP-2: Impact on PARP-Centered Cancer Therapies[J]. Cancers(Basel), 2020, 12(2):392. doi: 10.3390/cancers12020392.
|
[30] |
Pantelidou C, Sonzogni O, De Oliveria Taveira M, et al. PARP Inhibitor Efficacy Depends on CD8+ T-cell Recruitment via Intratumoral STING Pathway Activation in BRCA-Deficient Models of Triple-Negative Breast Cancer[J]. Cancer Discov, 2019, 9(6):722-737. doi: 10.1158/2159-8290.CD-18-1218.
|
[31] |
Lampert EJ, Zimmer A, Padget M, et al. Combination of PARP Inhibitor Olaparib, and PD-L1 Inhibitor Durvalumab, in Recurrent Ovarian Cancer: a Proof-of-Concept Phase Ⅱ Study[J]. Clin Cancer Res, 2020, 26(16):4268-4279. doi: 10.1158/1078-0432.CCR-20-0056.
pmid: 32398324
|
[32] |
Drew Y, De JM, Hong SH, et al. An open-label, phase II basket study of olaparib and durvalumab (MEDIOLA): Results in germline BRCA-mutated (gBRCAm) platinum-sensitive relapsed (PSR) ovarian cancer (OC)[J]. Gynecol Oncol, 2018, 149:246-247. doi:10.1016/j.ygyno.2018.04.555.
|
[33] |
Konstantinopoulos PA, Waggoner S, Vidal GA, et al. Single-Arm Phases 1 and 2 Trial of Niraparib in Combination With Pembrolizumab in Patients With Recurrent Platinum-Resistant Ovarian Carcinoma[J]. JAMA Oncol, 2019, 5(8):1141-1149. doi: 10.1001/jamaoncol.2019.1048.
|
[34] |
Pusztai L, Yau C, Wolf DM, et al. Durvalumab with olaparib and paclitaxel for high-risk HER2-negative stage Ⅱ/Ⅲ breast cancer: Results from the adaptively randomized I-SPY2 trial[J]. Cancer Cell, 2021, 39(7):989-998.e5. doi: 10.1016/j.ccell.2021.05.009.
pmid: 34143979
|
[35] |
Monk BJ, Coleman RL, Fujiwara K, et al. ATHENA (GOG-3020/ENGOT-ov45): a randomized, phase III trial to evaluate rucaparib as monotherapy (ATHENA-MONO) and rucaparib in combination with nivolumab (ATHENA-COMBO) as maintenance treatment following frontline platinum-based chemotherapy in ovarian cancer[J]. Int J Gynecol Cancer, 2021, 31(12):1589-1594. doi: 10.1136/ijgc-2021-002933.
pmid: 34593565
|