[1] |
陈家兰, 邓卓, 沈鑫, 等. 腹压和子宫重量对子宫韧带影响的有限元仿真研究[J]. 医用生物力学, 2022, 37(6):1127-1132. doi: 10.16156/j.1004-7220.2022.06.024.
|
[2] |
Wang B, Chen Y, Zhu X, et al. Global burden and trends of pelvic organ prolapse associated with aging women: An observational trend study from 1990 to 2019[J]. Front Public Health, 2022, 10:975829. doi: 10.3389/fpubh.2022.975829.
|
[3] |
中华医学会妇产科学分会妇科盆底学组. 盆腔器官脱垂的中国诊治指南(2020年版)[J]. 中华妇产科杂志, 2020, 55(5):300-306. doi: 10.3760/cma.j.cn112141-20200106-00016.
|
[4] |
Goh J, Ganyaglo G. Sacrospinous fixation: Review of relevant anatomy and surgical technique[J]. Int J Gynaecol Obstet, 2023, 162(3):842-846. doi: 10.1002/ijgo.14751.
pmid: 36939527
|
[5] |
OuYang Y, Xu W, Li F, et al. Anatomic identification of laparoscopic uterosacral ligament suspension: A step-by-step procedure[J]. Int Urogynecol J, 2022, 33(12):3587-3590. doi: 10.1007/s00192-022-05257-8.
pmid: 35723712
|
[6] |
Campagna G, Panico G, Lombisani A, et al. Laparoscopic uterosacral ligament suspension: a comprehensive, systematic literature review[J]. Eur J Obstet Gynecol Reprod Biol, 2022, 277:57-70. doi: 10.1016/j.ejogrb.2022.08.006.
pmid: 36007356
|
[7] |
王倩, 夏志军. 高位宫骶韧带悬吊术治疗中盆腔缺陷的研究进展[J]. 国际妇产科学杂志, 2021, 48(2):213-218. doi: 10.12280/gjfckx.20200493.
|
[8] |
刘希云, 王剑, 刘青. 基因多态性在盆腔脏器脱垂中的研究进展[J]. 中国妇幼保健, 2020, 35(6):1168-1170. doi: 10.19829/j.zgfybj.issn.1001-4411.2020.06.063.
|
[9] |
张雪, 魏芬, 谈存梅, 等. 产后6-8周盆腔器官脱垂患病率的Meta分析[J]. 医学信息, 2023, 36(8):98-103. doi: 10.3969/j.issn.1006-1959.2023.08.020.
|
[10] |
徐文静, 王红雨, 江勇, 等. 孕期盆腹生物力学改变对女性盆底功能的影响[J]. 医用生物力学, 2021, 36(2):330-334. doi: 10.16156/j.1004-7220.2021.02.025.
|
[11] |
陈怡文, 吴晓梅. 自体组织缝合固定手术在女性中盆腔缺陷治疗中的价值[J]. 中国实用妇科与产科杂志, 2021, 37(12):1191-1194. doi: 10.19538/j.fk2021120105.
|
[12] |
Mao M, Fu H, Wang Q, et al. The effect of hysteropreservation versus hysterectomy on the outcome of laparoscopic uterosacral suspension in pelvic organ prolapse surgery[J]. Maturitas, 2023, 170:58-63. doi: 10.1016/j.maturitas.2023.01.005.
pmid: 36773501
|
[13] |
张雅琳, 梅劼. 自体组织修补术在治疗盆腔脏器脱垂中的应用[J]. 实用医院临床杂志, 2023, 20(2):173-177. doi: 10.3969/j.issn.1672-6170.2023.02.043.
|
[14] |
Ramanah R, Berger MB, Parratte BM, et al. Anatomy and histology of apical support: a literature review concerning cardinal and uterosacral ligaments[J]. Int Urogynecol J, 2012, 23(11):1483-1494. doi: 10.1007/s00192-012-1819-7.
pmid: 22618209
|
[15] |
Buller JL, Thompson JR, Cundiff GW, et al. Uterosacral ligament: description of anatomic relationships to optimize surgical safety[J]. Obstet Gynecol, 2001, 97(6):873-879. doi: 10.1016/s0029-7844(01)01346-1.
pmid: 11384688
|
[16] |
袁浩淼. 女性盆腔支持结构的解剖学观察[J]. 健康大视野, 2019(2):221-222. doi: 10.3969/j.issn.1005-0019.2019.02.273.
|
[17] |
王树瑜, 王温馨, 赵烨. 磁共振成像在盆腔器官脱垂诊治中的价值[J]. 国际妇产科学杂志, 2023, 50(1):116-120. doi: 10.12280/gjfckx.20020733.
|
[18] |
梁诗琪, 陈春林, 刘萍, 等. 盆腔器官脱垂患者宫骶韧带与输尿管、直肠解剖关系的MRI三维重建研究[J]. 中华妇产科杂志, 2021, 56(1):27-33. doi: 10.3760/cma.j.cn112141-20200612-00500.
|
[19] |
Donaldson K, Huntington A, De Vita R. Mechanics of Uterosacral Ligaments: Current Knowledge, Existing Gaps, and Future Directions[J]. Ann Biomed Eng, 2021, 49(8):1788-1804. doi: 10.1007/s10439-021-02755-6.
pmid: 33754254
|
[20] |
朱丽丽, 李冰, 薛静, 等. 盆腔器官脱垂的分子生物学机制的研究现状[J]. 现代医学与健康研究(电子版), 2022, 6(17):132-134.
|
[21] |
Chi N, Lozo S, Rathnayake R, et al. Distinctive structure, composition and biomechanics of collagen fibrils in vaginal wall connective tissues associated with pelvic organ prolapse[J]. Acta Biomater, 2022, 152:335-344. doi: 10.1016/j.actbio.2022.08.059.
pmid: 36055614
|
[22] |
Saputra A, Rizal DM, Ayuandari S, et al. The difference in collagen type-1 expression in women with and without pelvic organ prolapse: a systematic review and meta-analysis[J]. Int Urogynecol J, 2022, 33(7):1803-1812. doi: 10.1007/s00192-022-05229-y.
pmid: 35596801
|
[23] |
Marcu RD, Mischianu D, Iorga L, et al. Oxidative Stress: A Possible Trigger for Pelvic Organ Prolapse[J]. J Immunol Res, 2020, 2020:3791934. doi: 10.1155/2020/3791934.
|
[24] |
Ying W, Hu Y, Zhu H. Expression of CD44, Transforming Growth Factor-β, and Matrix Metalloproteinases in Women With Pelvic Organ Prolapse[J]. Front Surg, 2022, 9:902871. doi: 10.3389/fsurg.2022.902871.
|
[25] |
Ben-Zvi M, Herman HG, Schreiber L, et al. Expression of Heparanase in uterosacral ligaments of women with or without uterine prolapse[J]. Eur J Obstet Gynecol Reprod Biol, 2020, 244:110-113. doi: 10.1016/j.ejogrb.2019.11.024.
pmid: 31785466
|
[26] |
李洋, 申复进, 洪莎莎, 等. 机械力对女性阴道前壁成纤维细胞骨架及凋亡的影响[J]. 现代妇产科进展, 2021, 30(10):761-764. doi: 10.13283/j.cnki.xdfckjz.2021.10.004.
|
[27] |
Huang L, Zhao Z, Wen J, et al. Cellular senescence: A pathogenic mechanism of pelvic organ prolapse (Review)[J]. Mol Med Rep, 2020, 22(3):2155-2162. doi: 10.3892/mmr.2020.11339.
pmid: 32705234
|
[28] |
卓然然, 聂明朝, 李丽红, 等. 过氧化氢诱导大鼠离体子宫韧带成纤维细胞的相关变化[J]. 中国比较医学杂志, 2021, 31(7):93-99. doi: 10.3969/j.issn.1671-7856.2021.07.014.
|
[29] |
邓志敏, 代芳芳, 程艳香. 盆底器官脱垂分子生物学发病机制的研究进展[J]. 中国计划生育和妇产科, 2021, 13(8):12-14,22. doi: 10.3969/j.issn.1674-4020.2021.08.04.
|
[30] |
任洁, 平毅, 黄玲玲. 氧化应激机制在盆腔器官脱垂中的研究进展[J]. 中国性科学, 2020, 29(4):79-82. doi: 10.3969/j.issn.1672-1993.2020.04.023.
|
[31] |
Zhang L, Dai F, Chen G, et al. Molecular mechanism of extracellular matrix disorder in pelvic organ prolapses[J]. Mol Med Rep, 2020, 22(6):4611-4618. doi: 10.3892/mmr.2020.11564.
pmid: 33173982
|
[32] |
Wang XQ, He RJ, Xiao BB, et al. Therapeutic Effects of 17β-Estradiol on Pelvic Organ Prolapse by Inhibiting Mfn2 Expression: An In Vitro Study[J]. Front Endocrinol(Lausanne), 2020, 11:586242. doi: 10.3389/fendo.2020.586242.
|
[33] |
Xie T, Guo D, Guo T, et al. The protective effect of 17 β-estradiol on human uterosacral ligament fibroblasts from postmenopausal women with pelvic organ prolapse[J]. Front Physiol, 2022, 13:980843. doi: 10.3389/fphys.2022.980843.
|
[34] |
Zhu Y, Li L, Xie T, et al. Mechanical stress influences the morphology and function of human uterosacral ligament fibroblasts and activates the p38 MAPK pathway[J]. Int Urogynecol J, 2022, 33(8):2203-2212. doi: 10.1007/s00192-021-04850-7.
|
[35] |
Reay Jones NH, Healy JC, King LJ, et al. Pelvic connective tissue resilience decreases with vaginal delivery, menopause and uterine prolapse[J]. Br J Surg, 2003, 90(4):466-472. doi: 10.1002/bjs.4065.
|
[36] |
Martins P, Silva-Filho AL, Fonseca AM, et al. Strength of round and uterosacral ligaments: a biomechanical study[J]. Arch Gynecol Obstet, 2013, 287(2):313-318. doi: 10.1007/s00404-012-2564-3.
pmid: 23001414
|
[37] |
Rivaux G, Rubod C, Dedet B, et al. Comparative analysis of pelvic ligaments: a biomechanics study[J]. Int Urogynecol J, 2013, 24(1):135-139. doi: 10.1007/s00192-012-1861-5.
pmid: 22751993
|
[38] |
Chantereau P, Brieu M, Kammal M, et al. Mechanical properties of pelvic soft tissue of young women and impact of aging[J]. Int Urogynecol J, 2014, 25(11):1547-1553. doi: 10.1007/s00192-014-2439-1.
pmid: 25007897
|
[39] |
Danso EK, Schuster JD, Johnson I, et al. Comparison of Biaxial Biomechanical Properties of Post-menopausal Human Prolapsed and Non-prolapsed Uterosacral Ligament[J]. Sci Rep, 2020, 10(1):7386. doi: 10.1038/s41598-020-64192-0.
pmid: 32355180
|
[40] |
Lua-Mailland LL, Wallace SL, Khan FA, et al. Review of Vaginal Approaches to Apical Prolapse Repair[J]. Curr Urol Rep, 2022, 23(12):335-344. doi: 10.1007/s11934-022-01124-7.
pmid: 36355328
|
[41] |
Smith TM, Luo J, Hsu Y, et al. A novel technique to measure in vivo uterine suspensory ligament stiffness[J]. Am J Obstet Gynecol, 2013, 209(5):484.e1-e7. doi: 10.1016/j.ajog.2013.06.003.
|
[42] |
Luo J, Smith TM, Ashton-Miller JA, et al. In vivo properties of uterine suspensory tissue in pelvic organ prolapse[J]. J Biomech Eng, 2014, 136(2):021016. doi: 10.1115/1.4026159.
|
[43] |
Luo J, Swenson CW, Betschart C, et al. Comparison of in vivo visco-hyperelastic properties of uterine suspensory tissue in women with and without pelvic organ prolapse[J]. J Mech Behav Biomed Mater, 2023, 137:105544. doi: 10.1016/j.jmbbm.2022.105544.
|
[44] |
Liu X, Rong Q, Liu Y, et al. Relationship between high intra-abdominal pressure and compliance of the pelvic floor support system in women without pelvic organ prolapse: A finite element analysis[J]. Front Med(Lausanne), 2022, 9:820016. doi: 10.3389/fmed.2022.820016.
|
[45] |
Xu Z, Chen N, Wang B, et al. Creation of the biomechanical finite element model of female pelvic floor supporting structure based on thin-sectional high-resolution anatomical images[J]. J Biomech, 2023, 146:111399. doi: 10.1016/j.jbiomech.2022.111399.
|