[1] |
Raju R, Linder BJ. Evaluation and Management of Pelvic Organ Prolapse[J]. Mayo Clin Proc, 2021, 96(12):3122-3129. doi: 10.1016/j.mayocp.2021.09.005.
pmid: 34863399
|
[2] |
Weintraub AY, Glinter H, Marcus-Braun N. Narrative review of the epidemiology, diagnosis and pathophysiology of pelvic organ prolapse[J]. Int Braz J Urol, 2020, 46(1):5-14. doi: 10.1590/S1677-5538.IBJU.2018.0581.
pmid: 31851453
|
[3] |
Gong R, Xi Y, Jin X, et al. Effects of the decrease of β-catenin expression on human vaginal fibroblasts of women with pelvic organ prolapse[J]. J Obstet Gynaecol Res, 2021, 47(11):4014-4022. doi: 10.1111/jog.14946.
|
[4] |
Clément V, Roy V, Paré B, et al. Tridimensional cell culture of dermal fibroblasts promotes exosome-mediated secretion of extracellular matrix proteins[J]. Sci Rep, 2022, 12(1):19786. doi: 10.1038/s41598-022-23433-0.
pmid: 36396670
|
[5] |
Huang L, Zhao Z, Wen J, et al. Cellular senescence: A pathogenic mechanism of pelvic organ prolapse (Review)[J]. Mol Med Rep, 2020, 22(3):2155-2162. doi: 10.3892/mmr.2020.11339.
pmid: 32705234
|
[6] |
Sima Y, Li L, Xiao C, et al. Advanced glycation end products (AGEs) downregulate the miR-4429/PTEN axis to promote apoptosis of fibroblasts in pelvic organ prolapse[J]. Ann Transl Med, 2022, 10(15):821. doi: 10.21037/atm-22-628.
pmid: 36035012
|
[7] |
Yin Y, Qin M, Luan M, et al. miR-19-3p Promotes Autophagy and Apoptosis in Pelvic Organ Prolapse Through the AKT/mTOR/p70S6K Pathway: Function of miR-19-3p on Vaginal Fibroblasts by Targeting IGF-1[J]. Female Pelvic Med Reconstr Surg, 2021, 27(9):e630-e638. doi: 10.1097/SPV.0000000000001034.
|
[8] |
Sun X, Zhu H, Li W, et al. Small extracellular vesicles secreted by vaginal fibroblasts exert inhibitory effect in female stress urinary incontinence through regulating the function of fibroblasts[J]. PLoS One, 2021, 16(4):e0249977. doi: 10.1371/journal.pone.0249977.
|
[9] |
Zhao C, Xiao Y, Ling S, et al. Structure of Collagen[J]. Methods Mol Biol, 2021, 2347:17-25. doi: 10.1007/978-1-0716-1574-4_2.
pmid: 34472051
|
[10] |
Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, et al. The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases[J]. Int J Mol Sci, 2020, 21(24):9739. doi: 10.3390/ijms21249739.
|
[11] |
Abdel-Hamid NM, Abass SA. Matrix metalloproteinase contribution in management of cancer proliferation, metastasis and drug targeting[J]. Mol Biol Rep, 2021, 48(9):6525-6538. doi: 10.1007/s11033-021-06635-z.
pmid: 34379286
|
[12] |
Muscella A, Vetrugno C, Cossa LG, et al. TGF-β1 activates RSC96 Schwann cells migration and invasion through MMP-2 and MMP-9 activities[J]. J Neurochem, 2020, 153(4):525-538. doi: 10.1111/jnc.14913.
pmid: 31729763
|
[13] |
Heinz A. Elastases and elastokines: elastin degradation and its significance in health and disease[J]. Crit Rev Biochem Mol Biol, 2020, 55(3):252-273. doi: 10.1080/10409238.2020.1768208.
|
[14] |
Martín-López J, Pérez-Rico C, Benito-Martínez S, et al. The Role of the Stromal Extracellular Matrix in the Development of Pterygium Pathology: An Update[J]. J Clin Med, 2021, 10(24):5930. doi: 10.3390/jcm10245930.
|
[15] |
Yanagisawa H, Schluterman MK, Brekken RA. Fibulin-5, an integrin-binding matricellular protein: its function in development and disease[J]. J Cell Commun Signal, 2009, 3(3/4):337-347. doi: 10.1007/s12079-009-0065-3.
|
[16] |
Hung MJ, Wen MC, Hung CN, et al. Tissue-engineered fascia from vaginal fibroblasts for patients needing reconstructive pelvic surgery[J]. Int Urogynecol J, 2010, 21(9):1085-1093. doi: 10.1007/s00192-010-1168-3.
|
[17] |
Gong R, Ji Y, Zhao Y, et al. Changes in β-Catenin Expression in the Anterior Vaginal Wall Tissues of Women With Pelvic Organ Prolapse: A Potential Pathophysiological Mechanism[J]. Female Pelvic Med Reconstr Surg, 2020, 26(11):e54-e61. doi: 10.1097/SPV.0000000000000782.
|
[18] |
Tian X, Wang F, Luo Y, et al. Protective Role of Nuclear Factor-Erythroid 2-Related Factor 2 Against Radiation-Induced Lung Injury and Inflammation[J]. Front Oncol, 2018, 8:542. doi: 10.3389/fonc.2018.00542.
pmid: 30533397
|
[19] |
Guo Y, Jia X, Cui Y, et al. Sirt3-mediated mitophagy regulates AGEs-induced BMSCs senescence and senile osteoporosis[J]. Redox Biol, 2021, 41:101915. doi: 10.1016/j.redox.2021.101915.
|
[20] |
Chen YS, Wang XJ, Feng W, et al. Advanced glycation end products decrease collagen I levels in fibroblasts from the vaginal wall of patients with POP via the RAGE, MAPK and NF-κB pathways[J]. Int J Mol Med, 2017, 40(4):987-998. doi: 10.3892/ijmm.2017.3097.
|
[21] |
Chen L, Liu B, Qin Y, et al. Mitochondrial Fusion Protein Mfn2 and Its Role in Heart Failure[J]. Front Mol Biosci, 2021, 8:681237. doi: 10.3389/fmolb.2021.681237.
|
[22] |
Han S, Zhao F, Hsia J, et al. The role of Mfn2 in the structure and function of endoplasmic reticulum-mitochondrial tethering in vivo[J]. J Cell Sci, 2021, 134(13):jcs253443. doi: 10.1242/jcs.253443.
|
[23] |
Wang XQ, He RJ, Xiao BB, et al. Therapeutic Effects of 17β-Estradiol on Pelvic Organ Prolapse by Inhibiting Mfn2 Expression: An In Vitro Study[J]. Front Endocrinol (Lausanne), 2020, 11:586242. doi: 10.3389/fendo.2020.586242.
|
[24] |
Yu X, He L, Wang Y, et al. Local Estrogen Therapy for Pelvic Organ Prolapse in Postmenopausal Women: A Systematic Review and Meta-Analysis[J]. Iran J Public Health, 2022, 51(8):1728-1740. doi: 10.18502/ijph.v51i8.10255.
pmid: 36249112
|
[25] |
Tyagi T, Alarab M, Leong Y, et al. Local oestrogen therapy modulates extracellular matrix and immune response in the vaginal tissue of post-menopausal women with severe pelvic organ prolapse[J]. J Cell Mol Med, 2019, 23(4):2907-2919. doi: 10.1111/jcmm.14199.
pmid: 30772947
|
[26] |
Zhang L, Dai F, Chen G, et al. Molecular mechanism of extracellular matrix disorder in pelvic organ prolapses[J]. Mol Med Rep, 2020, 22(6):4611-4618. doi: 10.3892/mmr.2020.11564.
pmid: 33173982
|
[27] |
Ma Y, Guess M, Datar A, et al. Knockdown of Hoxa11 in vivo in the uterosacral ligament and uterus of mice results in altered collagen and matrix metalloproteinase activity[J]. Biol Reprod, 2012, 86(4):100. doi: 10.1095/biolreprod.111.093245.
pmid: 22190701
|
[28] |
Zhao B, Sun Q, Fan Y, et al. Transplantation of bone marrow-derived mesenchymal stem cells with silencing of microRNA-138 relieves pelvic organ prolapse through the FBLN5/IL-1β/elastin pathway[J]. Aging(Albany NY), 2021, 13(2):3045-3059. doi: 10.18632/aging.202465.
|
[29] |
Ying W, Hu Y, Zhu H. Expression of CD44, Transforming Growth Factor-β, and Matrix Metalloproteinases in Women With Pelvic Organ Prolapse[J]. Front Surg, 2022, 9:902871. doi: 10.3389/fsurg.2022.902871.
|
[30] |
Li L, Ma Y, Yang H, et al. The polymorphisms of extracellular matrix-remodeling genes are associated with pelvic organ prolapse[J]. Int Urogynecol J, 2022, 33(2):267-274. doi: 10.1007/s00192-021-04917-5.
pmid: 34973089
|
[31] |
Sun MJ, Cheng YS, Sun R, et al. Changes in mitochondrial DNA copy number and extracellular matrix (ECM) proteins in the uterosacral ligaments of premenopausal women with pelvic organ prolapse[J]. Taiwan J Obstet Gynecol, 2016, 55(1):9-15. doi: 10.1016/j.tjog.2014.04.032.
|
[32] |
Hu Y, Wu R, Li H, et al. Expression and Significance of Metalloproteinase and Collagen in Vaginal Wall Tissues of Patients with Pelvic Organ Prolapse[J]. Ann Clin Lab Sci, 2017, 47(6):698-705.
pmid: 29263043
|
[33] |
Chen B, Wen Y, Polan ML. Elastolytic activity in women with stress urinary incontinence and pelvic organ prolapse[J]. Neurourol Urodyn, 2004, 23(2):119-126. doi: 10.1002/nau.20012.
|
[34] |
Akintunde AR, Robison KM, Capone DJ, et al. Effects of Elastase Digestion on the Murine Vaginal Wall Biaxial Mechanical Response[J]. J Biomech Eng, 2019, 141(2):0210111-02101111. doi: 10.1115/1.4042014.
|