[1] |
Ruiz LM, Libedinsky A, Elorza AA. Role of Copper on Mitochondrial Function and Metabolism[J]. Front Mol Biosci, 2021, 8:711227. doi: 10.3389/fmolb.2021.711227.
|
[2] |
Lelièvre P, Sancey L, Coll JL, et al. The Multifaceted Roles of Copper in Cancer: A Trace Metal Element with Dysregulated Metabolism, but Also a Target or a Bullet for Therapy[J]. Cancers(Basel), 2020, 12(12):3594. doi: 10.3390/cancers12123594.
|
[3] |
Chen J, Jiang Y, Shi H, et al. The molecular mechanisms of copper metabolism and its roles in human diseases[J]. Pflugers Arch, 2020, 472(10):1415-1429. doi: 10.1007/s00424-020-02412-2.
|
[4] |
Lopez J, Ramchandani D, Vahdat L. Copper Depletion as a Therapeutic Strategy in Cancer[J]. Met Ions Life Sci, 2019, 19:/books/9783110527872/9783110527872-9783110527018/9783110527872-9783110527018.xml. doi: 10.1515/9783110527872-018.
|
[5] |
Xie J, Yang Y, Gao Y, et al. Cuproptosis: mechanisms and links with cancers[J]. Mol Cancer, 2023, 22(1):46. doi: 10.1186/s12943-023-01732-y.
pmid: 36882769
|
[6] |
Denoyer D, Masaldan S, La Fontaine S, et al. Targeting copper in cancer therapy: ′Copper That Cancer′[J]. Metallomics, 2015, 7(11):1459-1476. doi: 10.1039/c5mt00149h.
|
[7] |
Li Y. Copper homeostasis: Emerging target for cancer treatment[J]. IUBMB Life, 2020, 72(9):1900-1908. doi: 10.1002/iub.2341.
|
[8] |
Ford CE, Werner B, Hacker NF, et al. The untapped potential of ascites in ovarian cancer research and treatment[J]. Br J Cancer, 2020, 123(1):9-16. doi: 10.1038/s41416-020-0875-x.
|
[9] |
Onuma T, Mizutani T, Fujita Y, et al. Copper content in ascitic fluid is associated with angiogenesis and progression in ovarian cancer[J]. J Trace Elem Med Biol, 2021, 68:126865. doi: 10.1016/j.jtemb.2021.126865.
|
[10] |
Yaman M, Kaya G, Simsek M. Comparison of trace element concentrations in cancerous and noncancerous human endometrial and ovary tissues[J]. Int J Gynecol Cancer, 2007, 17(1):220-228. doi: 10.1111/j.1525-1438.2006.00742.x.
pmid: 17291257
|
[11] |
Conforti RA, Delsouc MB, Zorychta E, et al. Copper in Gynecological Diseases[J]. Int J Mol Sci, 2023, 24(24):17578. doi: 10.3390/ijms242417578.
|
[12] |
Toubhans B, Gourlan AT, Telouk P, et al. Cu isotope ratios are meaningful in ovarian cancer diagnosis[J]. J Trace Elem Med Biol, 2020, 62:126611. doi: 10.1016/j.jtemb.2020.126611.
|
[13] |
Holzer AK, Manorek GH, Howell SB. Contribution of the major copper influx transporter CTR1 to the cellular accumulation of cisplatin, carboplatin, and oxaliplatin[J]. Mol Pharmacol, 2006, 70(4):1390-1394. doi: 10.1124/mol.106.022624.
pmid: 16847145
|
[14] |
Öhrvik H, Thiele DJ. The role of Ctr1 and Ctr2 in mammalian copper homeostasis and platinum-based chemotherapy[J]. J Trace Elem Med Biol, 2015, 31:178-182. doi: 10.1016/j.jtemb.2014.03.006.
pmid: 24703712
|
[15] |
Guo J, Sun Y, Liu G. The mechanism of copper transporters in ovarian cancer cells and the prospect of cuproptosis[J]. J Inorg Biochem, 2023, 247:112324. doi: 10.1016/j.jinorgbio.2023.112324.
|
[16] |
Lukanović D, Herzog M, Kobal B, et al. The contribution of copper efflux transporters ATP7A and ATP7B to chemoresistance and personalized medicine in ovarian cancer[J]. Biomed Pharmacother, 2020, 129:110401. doi: 10.1016/j.biopha.2020.110401.
pmid: 32570116
|
[17] |
Samimi G, Varki NM, Wilczynski S, et al. Increase in expression of the copper transporter ATP7A during platinum drug-based treatment is associated with poor survival in ovarian cancer patients[J]. Clin Cancer Res, 2003, 9(16 Pt 1):5853-5859.
pmid: 14676106
|
[18] |
Nakayama K, Kanzaki A, Ogawa K, et al. Copper-transporting P-type adenosine triphosphatase (ATP7B) as a cisplatin based chemoresistance marker in ovarian carcinoma: comparative analysis with expression of MDR1, MRP1, MRP2, LRP and BCRP[J]. Int J Cancer, 2002, 101(5): 488-495. doi:10.1002/ijc.10608.
pmid: 12216079
|
[19] |
Yang F, Pei R, Zhang Z, et al. Copper induces oxidative stress and apoptosis through mitochondria-mediated pathway in chicken hepatocytes[J]. Toxicol In Vitro, 2019, 54:310-316. doi: 10.1016/j.tiv.2018.10.017.
pmid: 30389602
|
[20] |
Tawari PE, Wang Z, Najlah M, et al. The cytotoxic mechanisms of disulfiram and copper(ii) in cancer cells[J]. Toxicol Res(Camb), 2015, 4(6):1439-1442. doi: 10.1039/c5tx00210a.
|
[21] |
Tsvetkov P, Coy S, Petrova B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins[J]. Science, 2022, 375(6586):1254-1261. doi: 10.1126/science.abf0529.
pmid: 35298263
|
[22] |
Chan N, Willis A, Kornhauser N, et al. Influencing the Tumor Microenvironment: A Phase Ⅱ Study of Copper Depletion Using Tetrathiomolybdate in Patients with Breast Cancer at High Risk for Recurrence and in Preclinical Models of Lung Metastases[J]. Clin Cancer Res, 2017, 23(3):666-676. doi: 10.1158/1078-0432.CCR-16-1326.
|
[23] |
Ishida S, McCormick F, Smith-McCune K, et al. Enhancing tumor-specific uptake of the anticancer drug cisplatin with a copper chelator[J]. Cancer Cell, 2010, 17(6):574-583. doi: 10.1016/j.ccr.2010.04.011.
pmid: 20541702
|
[24] |
Fu S, Naing A, Fu C, et al. Overcoming platinum resistance through the use of a copper-lowering agent[J]. Mol Cancer Ther, 2012, 11(6):1221-1225. doi: 10.1158/1535-7163.MCT-11-0864.
pmid: 22491798
|
[25] |
Huang YF, Kuo MT, Liu YS, et al. A Dose Escalation Study of Trientine Plus Carboplatin and Pegylated Liposomal Doxorubicin in Women With a First Relapse of Epithelial Ovarian, Tubal, and Peritoneal Cancer Within 12 Months After Platinum-Based Chemotherapy[J]. Front Oncol, 2019, 9:437. doi: 10.3389/fonc.2019.00437.
|
[26] |
Tang X, Yan Z, Miao Y, et al. Copper in cancer: from limiting nutrient to therapeutic target[J]. Front Oncol, 2023, 13:1209156. doi: 10.3389/fonc.2023.1209156.
|
[27] |
Guo F, Yang Z, Kulbe H, et al. Inhibitory effect on ovarian cancer ALDH+ stem-like cells by Disulfiram and Copper treatment through ALDH and ROS modulation[J]. Biomed Pharmacother, 2019, 118:109371. doi: 10.1016/j.biopha.2019.109371.
|
[28] |
Tang B, Wu M, Zhang L, et al. Combined treatment of disulfiram with PARP inhibitors suppresses ovarian cancer[J]. Front Oncol, 2023, 13:1154073. doi: 10.3389/fonc.2023.1154073.
|
[29] |
Du R, Sun F, Li K, et al. Proteomics Analysis Revealed Smad3 as a Potential Target of the Synergistic Antitumor Activity of Disulfiram and Cisplatin in Ovarian Cancer[J]. Anticancer Agents Med Chem, 2023, 23(15):1754-1764. doi: 10.2174/1871520623666230516161200.
|
[30] |
Monk BJ, Kauderer JT, Moxley KM, et al. A phase Ⅱ evaluation of elesclomol sodium and weekly paclitaxel in the treatment of recurrent or persistent platinum-resistant ovarian, fallopian tube or primary peritoneal cancer: An NRG oncology/gynecologic oncology group study[J]. Gynecol Oncol, 2018, 151(3):422-427. doi: 10.1016/j.ygyno.2018.10.001.
|
[31] |
Zhang J, Lu M, Xu H, et al. Molecular subtypes based on cuproptosis-related genes and tumor microenvironment infiltration characterization in ovarian cancer[J]. Cancer Cell Int, 2022, 22(1):328. doi: 10.1186/s12935-022-02756-y.
pmid: 36307842
|