国际妇产科学杂志 ›› 2022, Vol. 49 ›› Issue (3): 286-290.doi: 10.12280/gjfckx.20220089
收稿日期:
2022-01-30
出版日期:
2022-06-15
发布日期:
2022-06-23
通讯作者:
肖虹
E-mail:xiaohh9999@163.com
基金资助:
LIU Yan, BIAN Wei, XIAO Hong()
Received:
2022-01-30
Published:
2022-06-15
Online:
2022-06-23
Contact:
XIAO Hong
E-mail:xiaohh9999@163.com
摘要:
细胞周期蛋白E1(Cyclin E1,CCNE1)基因扩增是卵巢高级别浆液性癌(high-grade serous ovarian carcinoma,HGSOC)最常见的拷贝数变异之一,扩增率为20%左右。CCNE1基因扩增不仅参与HGSOC的早期癌前病变,促进恶性肿瘤的发生、发展,还可引起细胞周期紊乱和染色体不稳定,从而增加HGSOC的铂类耐药性和复发率,最终导致患者的化疗效果不佳和预后较差。为改善CCNE1扩增的HGSOC患者的预后和生活质量,在暂时没有CCNE1扩增的HGSOC的靶向治疗药物的情况下,使用细胞周期蛋白依赖性激酶2(cyclin-dependent kinases 2,CDK2)小分子抑制剂或者多腺苷二磷酸核糖聚合酶[poly (ADP-ribose) polymerase,PARP]抑制剂与其他药物联合治疗,一定程度上能有效地抑制肿瘤细胞的增殖活性,促进肿瘤细胞死亡。因此,从CCNE1扩增对HGSOC的早期发病机制的影响和产生铂类耐药的角度上来说,CCNE1基因有望成为HGSOC的潜在治疗靶标和预后评价生物学指标,在改善患者的治疗和预后方面具有重要意义。
刘艳, 卞伟, 肖虹. CCNE1基因在卵巢高级别浆液性癌中的研究进展[J]. 国际妇产科学杂志, 2022, 49(3): 286-290.
LIU Yan, BIAN Wei, XIAO Hong. LIU Yan, BIAN Wei, XIAO Hong△[J]. Journal of International Obstetrics and Gynecology, 2022, 49(3): 286-290.
[1] |
Kroeger PT Jr, Drapkin R. Pathogenesis and heterogeneity of ovarian cancer[J]. Curr Opin Obstet Gynecol, 2017, 29(1):26-34. doi: 10.1097/GCO.0000000000000340.
doi: 10.1097/GCO.0000000000000340 |
[2] |
Gorski JW, Ueland FR, Kolesar JM. CCNE1 Amplification as a Predictive Biomarker of Chemotherapy Resistance in Epithelial Ovarian Cancer[J]. Diagnostics (Basel), 2020, 10(5):279. doi: 10.3390/diagnostics10050279.
doi: 10.3390/diagnostics10050279 |
[3] |
Sapoznik S, Aviel-Ronen S, Bahar-Shany K, et al. CCNE1 expression in high grade serous carcinoma does not correlate with chemoresistance[J]. Oncotarget, 2017, 8(37):62240-62247. doi: 10.18632/oncotarget.19272.
doi: 10.18632/oncotarget.19272 pmid: 28977941 |
[4] |
Patch AM, Christie EL, Etemadmoghadam D, et al. Whole-genome characterization of chemoresistant ovarian cancer[J]. Nature, 2015, 521(7553):489-494. doi: 10.1038/nature14410.
doi: 10.1038/nature14410 |
[5] |
Li Y, Li L. Bioinformatic screening for candidate biomarkers and their prognostic values in endometrial cancer[J]. BMC Genet, 2020, 21(1):113. doi: 10.1186/s12863-020-00898-4.
doi: 10.1186/s12863-020-00898-4 |
[6] |
Schott C, Shah AT, Sweet-Cordero EA. Genomic Complexity of Osteosarcoma and Its Implication for Preclinical and Clinical Targeted Therapies[J]. Adv Exp Med Biol, 2020, 1258:1-19. doi: 10.1007/978-3-030-43085-6_1.
doi: 10.1007/978-3-030-43085-6_1 |
[7] |
Zhao ZM, Yost SE, Hutchinson KE, et al. CCNE1 amplification is associated with poor prognosis in patients with triple negative breast cancer[J]. BMC Cancer, 2019, 19(1):96. doi: 10.1186/s12885-019-5290-4.
doi: 10.1186/s12885-019-5290-4 |
[8] |
Integrated genomic analyses of ovarian carcinoma[J]. Nature, 2011, 474(7353):609-615. doi: 10.1038/nature10166.
doi: 10.1038/nature10166 |
[9] |
Li J, Fadare O, Xiang L, et al. Ovarian serous carcinoma: recent concepts on its origin and carcinogenesis[J]. J Hematol Oncol, 2012, 5:8. doi: 10.1186/1756-8722-5-8.
doi: 10.1186/1756-8722-5-8 |
[10] |
Piek JM, van Diest PJ, Zweemer RP, et al. Dysplastic changes in prophylactically removed Fallopian tubes of women predisposed to developing ovarian cancer[J]. J Pathol, 2001, 195(4):451-456. doi: 10.1002/path.1000.
doi: 10.1002/path.1000 pmid: 11745677 |
[11] |
Karst AM, Jones PM, Vena N, et al. Cyclin E1 deregulation occurs early in secretory cell transformation to promote formation of fallopian tube-derived high-grade serous ovarian cancers[J]. Cancer Res, 2014, 74(4):1141-1152. doi: 10.1158/0008-5472.CAN-13-2247.
doi: 10.1158/0008-5472.CAN-13-2247 |
[12] |
Mei J, Tian H, Huang HS, et al. Cellular models of development of ovarian high-grade serous carcinoma: A review of cell of origin and mechanisms of carcinogenesis[J]. Cell Prolif, 2021, 54(5):e13029. doi: 10.1111/cpr.13029.
doi: 10.1111/cpr.13029 |
[13] |
Kuhn E, Wang TL, Doberstein K, et al. CCNE1 amplification and centrosome number abnormality in serous tubal intraepithelial carcinoma: further evidence supporting its role as a precursor of ovarian high-grade serous carcinoma[J]. Mod Pathol, 2016, 29(10):1254-1261. doi: 10.1038/modpathol.2016.101.
doi: 10.1038/modpathol.2016.101 |
[14] |
Venuto S, Merla G. E3 Ubiquitin Ligase TRIM Proteins, Cell Cycle and Mitosis[J]. Cells, 2019, 8(5):510. doi: 10.3390/cells8050510.
doi: 10.3390/cells8050510 |
[15] |
Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm[J]. Nat Rev Cancer, 2009, 9(3):153-166. doi: 10.1038/nrc2602.
doi: 10.1038/nrc2602 pmid: 19238148 |
[16] |
Pang W, Li Y, Guo W, et al. Cyclin E: a potential treatment target to reverse cancer chemoresistance by regulating the cell cycle[J]. Am J Transl Res, 2020, 12(9):5170-5187.
pmid: 33042412 |
[17] |
Maloney SM, Hoover CA, Morejon-Lasso LV, et al. Mechanisms of Taxane Resistance[J]. Cancers (Basel), 2020, 12(11):3323. doi: 10.3390/cancers12113323.
doi: 10.3390/cancers12113323 |
[18] |
Otsuka I. Mechanisms of High-Grade Serous Carcinogenesis in the Fallopian Tube and Ovary: Current Hypotheses, Etiologic Factors, and Molecular Alterations[J]. Int J Mol Sci, 2021, 22(9):4409. doi: 10.3390/ijms22094409.
doi: 10.3390/ijms22094409 |
[19] |
Hanahan D, Weinberg RA. The hallmarks of cancer[J]. Cell, 2000, 100(1):57-70. doi: 10.1016/s0092-8674(00)81683-9.
doi: 10.1016/s0092-8674(00)81683-9 pmid: 10647931 |
[20] |
Etemadmoghadam D, George J, Cowin PA, et al. Amplicon-dependent CCNE1 expression is critical for clonogenic survival after cisplatin treatment and is correlated with 20q11 gain in ovarian cancer[J]. PLoS One, 2010, 5(11):e15498. doi: 10.1371/journal.pone.0015498.
doi: 10.1371/journal.pone.0015498 |
[21] |
Hwang HC, Clurman BE. Cyclin E in normal and neoplastic cell cycles[J]. Oncogene, 2005, 24(17):2776-2786. doi: 10.1038/sj.onc.1208613.
doi: 10.1038/sj.onc.1208613 |
[22] |
Keck JM, Summers MK, Tedesco D, et al. Cyclin E overexpression impairs progression through mitosis by inhibiting APC(Cdh1)[J]. J Cell Biol, 2007, 178(3):371-385. doi: 10.1083/jcb.200703202.
doi: 10.1083/jcb.200703202 |
[23] |
Penner-Goeke S, Lichtensztejn Z, Neufeld M, et al. The temporal dynamics of chromosome instability in ovarian cancer cell lines and primary patient samples[J]. PLoS Genet, 2017, 13(4):e1006707. doi: 10.1371/journal.pgen.1006707.
doi: 10.1371/journal.pgen.1006707 |
[24] |
Vishwakarma R, McManus KJ. Chromosome Instability; Implications in Cancer Development, Progression, and Clinical Outcomes[J]. Cancers (Basel), 2020, 12(4):824. doi: 10.3390/cancers12040824.
doi: 10.3390/cancers12040824 |
[25] |
Chan AM, Enwere E, McIntyre JB, et al. Combined CCNE1 high-level amplification and overexpression is associated with unfavourable outcome in tubo-ovarian high-grade serous carcinoma[J]. J Pathol Clin Res, 2020, 6(4):252-262. doi: 10.1002/cjp2.168.
doi: 10.1002/cjp2.168 |
[26] |
Petersen S, Wilson AJ, Hirst J, et al. CCNE1 and BRD4 co-amplification in high-grade serous ovarian cancer is associated with poor clinical outcomes[J]. Gynecol Oncol, 2020, 157(2):405-410. doi: 10.1016/j.ygyno.2020.01.038.
doi: 10.1016/j.ygyno.2020.01.038 |
[27] |
Filippova OT, Selenica P, Pareja F, et al. Molecular characterization of high-grade serous ovarian cancers occurring in younger and older women[J]. Gynecol Oncol, 2021, 161(2):545-552. doi: 10.1016/j.ygyno.2021.02.028.
doi: 10.1016/j.ygyno.2021.02.028 pmid: 33674143 |
[28] |
Yang L, Fang D, Chen H, et al. Cyclin-dependent kinase 2 is an ideal target for ovary tumors with elevated cyclin E1 expression[J]. Oncotarget, 2015, 6(25):20801-20812. doi: 10.18632/oncotarget.4600.
doi: 10.18632/oncotarget.4600 pmid: 26204491 |
[29] |
Nakayama N, Nakayama K, Shamima Y, et al. Gene amplification CCNE1 is related to poor survival and potential therapeutic target in ovarian cancer[J]. Cancer, 2010, 116(11):2621-2634. doi: 10.1002/cncr.24987.
doi: 10.1002/cncr.24987 pmid: 20336784 |
[30] |
Aziz D, Etemadmoghadam D, Caldon CE, et al. 19q12 amplified and non-amplified subsets of high grade serous ovarian cancer with overexpression of cyclin E1 differ in their molecular drivers and clinical outcomes[J]. Gynecol Oncol, 2018, 151(2):327-336. doi: 10.1016/j.ygyno.2018.08.039.
doi: 10.1016/j.ygyno.2018.08.039 |
[31] |
Au-Yeung G, Lang F, Azar WJ, et al. Selective Targeting of Cyclin E1-Amplified High-Grade Serous Ovarian Cancer by Cyclin-Dependent Kinase 2 and AKT Inhibition[J]. Clin Cancer Res, 2017, 23(7):1862-1874. doi: 10.1158/1078-0432.CCR-16-0620.
doi: 10.1158/1078-0432.CCR-16-0620 pmid: 27663592 |
[32] |
Etemadmoghadam D, Au-Yeung G, Wall M, et al. Resistance to CDK2 inhibitors is associated with selection of polyploid cells in CCNE1-amplified ovarian cancer[J]. Clin Cancer Res, 2013, 19(21):5960-5971. doi: 10.1158/1078-0432.CCR-13-1337.
doi: 10.1158/1078-0432.CCR-13-1337 pmid: 24004674 |
[33] |
Mittica G, Ghisoni E, Giannone G, et al. PARP Inhibitors in Ovarian Cancer[J]. Recent Pat Anticancer Drug Discov, 2018, 13(4):392-410. doi: 10.2174/1574892813666180305165256.
doi: 10.2174/1574892813666180305165256 pmid: 29512470 |
[34] |
Mirza MR, Coleman RL, González-Martín A, et al. The forefront of ovarian cancer therapy: update on PARP inhibitors[J]. Ann Oncol, 2020, 31(9):1148-1159. doi: 10.1016/j.annonc.2020.06.004.
doi: S0923-7534(20)39891-4 pmid: 32569725 |
[35] |
Ibrahim EM, Refae AA, Bayer AM, et al. Poly(ADP-ribose) polymerase inhibitors as maintenance treatment in patients with newly diagnosed advanced ovarian cancer: a meta-analysis[J]. Future Oncol, 2020, 16(10):585-596. doi: 10.2217/fon-2020-0057.
doi: 10.2217/fon-2020-0057 |
[36] |
Onstad M, Coleman RL, Westin SN. Movement of Poly-ADP Ribose (PARP) Inhibition into Frontline Treatment of Ovarian Cancer[J]. Drugs, 2020, 80(15):1525-1535. doi: 10.1007/s40265-020-01382-0.
doi: 10.1007/s40265-020-01382-0 |
[37] |
Kim H, Xu H, George E, et al. Combining PARP with ATR inhibition overcomes PARP inhibitor and platinum resistance in ovarian cancer models[J]. Nat Commun, 2020, 11(1):3726. doi: 10.1038/s41467-020-17127-2.
doi: 10.1038/s41467-020-17127-2 |
[38] |
Gupta VG, Hirst J, Petersen S, et al. Entinostat, a selective HDAC1/2 inhibitor, potentiates the effects of olaparib in homologous recombination proficient ovarian cancer[J]. Gynecol Oncol, 2021, 162(1):163-172. doi: 10.1016/j.ygyno.2021.04.015.
doi: 10.1016/j.ygyno.2021.04.015 |
[1] | 白耀俊, 王思瑶, 令菲菲, 张森淮, 李红丽, 刘畅. Trop-2及靶向Trop-2抗体偶联药物在妇科恶性肿瘤中的应用进展[J]. 国际妇产科学杂志, 2025, 52(1): 1-7. |
[2] | 张云凤, 张宛玥, 卢悦, 王阳阳, 井佳雨, 牟婧祎, 王悦. ARID1A与PIK3CA突变在卵巢子宫内膜异位症恶变中的研究进展[J]. 国际妇产科学杂志, 2025, 52(1): 19-22. |
[3] | 李楠, 彭二玄, 刘风花. 卵巢上皮性癌脑转移20例临床分析[J]. 国际妇产科学杂志, 2025, 52(1): 23-27. |
[4] | 贾炎峰, 吴珍珍, 王维红, 王玥元, 李娟. 原发性卵巢腺鳞癌一例[J]. 国际妇产科学杂志, 2025, 52(1): 32-36. |
[5] | 宋丽芳, 吴珍珍, 毛宝宏, 赵小丽, 刘青. 卵巢癌腹股沟淋巴结孤立转移一例[J]. 国际妇产科学杂志, 2025, 52(1): 37-41. |
[6] | 豆苗苗, 郑婧, 张航, 杨博, 张春洁, 刘志杰. 子宫附腔畸形的诊断及预后分析一例[J]. 国际妇产科学杂志, 2025, 52(1): 84-88. |
[7] | 刘思敏, 李红丽, 郭希, 胡雅莉, 杨永秀. 妊娠晚期合并卵巢浆液性囊腺瘤蒂扭转一例[J]. 国际妇产科学杂志, 2024, 51(6): 632-635. |
[8] | 郭希, 刘思敏, 魏佳, 杨永秀. 卵巢及输卵管子宫内膜异位症恶变为透明细胞癌一例[J]. 国际妇产科学杂志, 2024, 51(6): 680-683. |
[9] | 黄沫雅, 赵雅倩, 何银芳. 妊娠合并库肯勃瘤的诊疗进展[J]. 国际妇产科学杂志, 2024, 51(5): 531-535. |
[10] | 张建楠, 郭鑫, 郭楠, 宁文婷, 于宏鑫, 尚海霞. 微流控技术在卵巢癌疾病建模、药物评估、精准医疗中的应用[J]. 国际妇产科学杂志, 2024, 51(5): 560-565. |
[11] | 何清, 胡红波. 人工智能在子宫内膜癌诊治中的应用与展望[J]. 国际妇产科学杂志, 2024, 51(5): 572-577. |
[12] | 金晓蕾, 许飞雪. 五例卵巢Brenner瘤诊治分析[J]. 国际妇产科学杂志, 2024, 51(5): 578-583. |
[13] | 陈治伟, 柳林. SMARCA4基因缺失的卵巢恶性肿瘤一例[J]. 国际妇产科学杂志, 2024, 51(5): 584-587. |
[14] | 苏海绮, 李雷. 甲基化检测用于卵巢癌筛查和诊断的研究进展[J]. 国际妇产科学杂志, 2024, 51(4): 366-369. |
[15] | 张静怡, 刘东哲, 陈秀慧. 外泌体在卵巢癌血管生成中的研究进展[J]. 国际妇产科学杂志, 2024, 51(4): 370-374. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||