[1] |
潘雷, 徐键. 多囊卵巢综合征患者雄激素代谢异常的研究进展[J]. 中外医学研究, 2021, 19(12):192-196. doi: 10.14033/j.cnki.cfmr.2021.12.069.
|
[2] |
Escobar-Morreale HF. Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment[J]. Nat Rev Endocrinol, 2018, 14(5):270-284. doi: 10.1038/nrendo.2018.24.
pmid: 29569621
|
[3] |
Aflatounian A, Edwards MC, Rodriguez Paris V, et al. Androgen signaling pathways driving reproductive and metabolic phenotypes in a PCOS mouse model[J]. J Endocrinol, 2020, 245(3):381-395. doi: 10.1530/JOE-19-0530.
pmid: 32229702
|
[4] |
Persson S, Ubhayasekera KA, Bergquist J, et al. Hyperandrogenic Symptoms Are a Persistent Suffering in Midlife Women with PCOS; a Prospective Cohort Study in Sweden[J]. Biomedicines, 2022, 11(1):96. doi: 10.3390/biomedicines11010096.
|
[5] |
乔杰, 齐新宇, 徐雅兰, 等. 关注影响女性健康的重要生殖内分泌疾病多囊卵巢综合征[J]. 中国实用妇科与产科杂志, 2020, 36(1):1-9. doi: 10.19538/j.fk2020010101.
|
[6] |
Nordenström A, Falhammar H. MANAGEMENT OF ENDOCRINE DISEASE: Diagnosis and management of the patient with non-classic CAH due to 21-hydroxylase deficiency[J]. Eur J Endocrinol, 2019, 180(3):R127-R145. doi: 10.1530/EJE-18-0712.
|
[7] |
Liao B, Qi X, Yun C, et al. Effects of Androgen Excess-Related Metabolic Disturbances on Granulosa Cell Function and Follicular Development[J]. Front Endocrinol(Lausanne), 2022, 13:815968. doi: 10.3389/fendo.2022.815968.
|
[8] |
Zhang Y, Zhao W, Xu H, et al. Hyperandrogenism and insulin resistance-induced fetal loss: evidence for placental mitochondrial abnormalities and elevated reactive oxygen species production in pregnant rats that mimic the clinical features of polycystic ovary syndrome[J]. J Physiol, 2019, 597(15):3927-3950. doi: 10.1113/JP277879.
|
[9] |
Kechagias KS, Semertzidou A, Athanasiou A, et al. Bisphenol-A and polycystic ovary syndrome: a review of the literature[J]. Rev Environ Health, 2020, 35(4):323-331. doi: 10.1515/reveh-2020-0032.
|
[10] |
Merii MH, Fardoun MM, El Asmar K, et al. Effect of BPA on CYP450s expression, and nicotine modulation, in fetal rat brain[J]. Neurotoxicol Teratol, 2022, 92:107095. doi: 10.1016/j.ntt.2022.107095.
|
[11] |
Shen J, Kang Q, Mao Y, et al. Urinary bisphenol A concentration is correlated with poorer oocyte retrieval and embryo implantation outcomes in patients with tubal factor infertility undergoing in vitro fertilisation[J]. Ecotoxicol Environ Saf, 2020, 187:109816. doi: 10.1016/j.ecoenv.2019.109816.
|
[12] |
Segovia-Mendoza M, Gómez de León CT, García-Becerra R, et al. The chemical environmental pollutants BPA and BPS induce alterations of the proteomic profile of different phenotypes of human breast cancer cells: A proposed interactome[J]. Environ Res, 2020, 191:109960. doi: 10.1016/j.envres.2020.109960.
|
[13] |
Ni Y, Hu L, Yang S, et al. Bisphenol A impairs cognitive function and 5-HT metabolism in adult male mice by modulating the microbiota-gut-brain axis[J]. Chemosphere, 2021, 282:130952. doi: 10.1016/j.chemosphere.2021.130952.
|
[14] |
Welch C, Mulligan K. Does Bisphenol A Confer Risk of Neurodevelopmental Disorders? What We Have Learned from Developmental Neurotoxicity Studies in Animal Models[J]. Int J Mol Sci, 2022, 23(5):2894. doi: 10.3390/ijms23052894.
|
[15] |
Sharif K, Kurnick A, Coplan L, et al. The Putative Adverse Effects of Bisphenol A on Autoimmune Diseases[J]. Endocr Metab Immune Disord Drug Targets, 2022, 22(7):665-676. doi: 10.2174/1871530321666210210154309.
|
[16] |
Della Rocca Y, Traini EM, Diomede F, et al. Current Evidence on Bisphenol A Exposure and the Molecular Mechanism Involved in Related Pathological Conditions[J]. Pharmaceutics, 2023, 15(3):908. doi: 10.3390/pharmaceutics15030908.
|
[17] |
Šimková M, Vítků J, Kolátorová L, et al. Endocrine disruptors, obesity, and cytokines-how relevant are they to PCOS?[J]. Physiol Res, 2020, 69(Suppl 2):S279-S293. doi: 10.33549/physiolres.934521.
pmid: 33094626
|
[18] |
Kawa IA, Masood A, Fatima Q, et al. Bisphenol A (BPA) act as an endocrine disruptor in women with Polycystic Ovary Syndrome: Hormonal and metabolic evaluation[J]. Obesity Medicine, 2019, 14:100090. doi: 10.1016/j.obmed.2019.100090.
|
[19] |
Konieczna A, Rachoń D, Owczarek K, et al. Serum bisphenol A concentrations correlate with serum testosterone levels in women with polycystic ovary syndrome[J]. Reprod Toxicol, 2018, 82:32-37. doi: 10.1016/j.reprotox.2018.09.006.
pmid: 30266220
|
[20] |
Wang K, Huang D, Zhou P, et al. BPA-induced prostatic hyperplasia in vitro is correlated with the unbalanced gene expression of AR and ER in the epithelium and stroma[J]. Toxicol Ind Health, 2021, 37(10):585-593. doi: 10.1177/07482337211042986.
|
[21] |
Lim SC, Geleta B, Maleki S, et al. The metastasis suppressor NDRG1 directly regulates androgen receptor signaling in prostate cancer[J]. J Biol Chem, 2021, 297(6):101414. doi: 10.1016/j.jbc.2021.101414.
|
[22] |
Huang X, Cang X, Liu J. Molecular mechanism of Bisphenol A on androgen receptor antagonism[J]. Toxicol In Vitro, 2019, 61:104621. doi: 10.1016/j.tiv.2019.104621.
|
[23] |
MacKay H, Abizaid A. A plurality of molecular targets: The receptor ecosystem for bisphenol-A (BPA)[J]. Horm Behav, 2018, 101:59-67. doi: 10.1016/j.yhbeh.2017.11.001.
pmid: 29104009
|
[24] |
Shi J, Liu C, Chen M, et al. The interference effects of bisphenol A on the synthesis of steroid hormones in human ovarian granulosa cells[J]. Environ Toxicol, 2021, 36(4):665-674. doi: 10.1002/tox.23070.
pmid: 33258555
|
[25] |
Eldefrawy F, Xu HS, Pusch E, et al. Modulation of folliculogenesis in adult laying chickens by bisphenol A and bisphenol S: Perspectives on ovarian morphology and gene expression[J]. Reprod Toxicol, 2021, 103:181-190. doi: 10.1016/j.reprotox.2021.06.010.
pmid: 34147626
|
[26] |
Wang D, Weng Y, Zhang Y, et al. Exposure to hyperandrogen drives ovarian dysfunction and fibrosis by activating the NLRP3 inflammasome in mice[J]. Sci Total Environ, 2020, 745:141049. doi: 10.1016/j.scitotenv.2020.141049.
|
[27] |
Fan X, Hou T, Jia J, et al. Discrepant dose responses of bisphenol A on oxidative stress and DNA methylation in grass carp ovary cells[J]. Chemosphere, 2020, 248:126110. doi: 10.1016/j.chemosphere.2020.126110.
|
[28] |
Roepke TA, Sadlier NC. REPRODUCTIVE TOXICOLOGY: Impact of endocrine disruptors on neurons expressing GnRH or kisspeptin and pituitary gonadotropins[J]. Reproduction, 2021, 162(5):F131-F145. doi: 10.1530/REP-20-0612.
pmid: 34228631
|
[29] |
陶亚楠, 毛亚萍, 杨俏俏, 等. 妊娠期双酚A暴露影响子代雌性大鼠卵巢功能与Wnt/β-catenin信号通路调控机制[J]. 中国职业医学, 2022, 49(1):34-40. doi: 10.20001/j.issn.2095-2619.2022006.
|
[30] |
Ye Y, Tang Y, Xiong Y, et al. Bisphenol A exposure alters placentation and causes preeclampsia-like features in pregnant mice involved in reprogramming of DNA methylation of WNT2[J]. FASEB J, 2019, 33(2):2732-2742. doi: 10.1096/fj.201800934RRR.
pmid: 30303745
|
[31] |
Cimmino I, Fiory F, Perruolo G, et al. Potential Mechanisms of Bisphenol A (BPA) Contributing to Human Disease[J]. Int J Mol Sci, 2020, 21(16):5761. doi: 10.3390/ijms21165761.
|
[32] |
Wade M, Delawder V, Reneau P, et al. The effect of BPA exposure on insulin resistance and type 2 diabetes - The impact of muscle contraction[J]. Med Hypotheses, 2020, 140:109675. doi: 10.1016/j.mehy.2020.109675.
|
[33] |
Hong SH, Sung YA, Hong YS, et al. Urinary bisphenol A is associated with insulin resistance and obesity in reproductive-aged women[J]. Clin Endocrinol (Oxf), 2017, 86(4):506-512. doi: 10.1111/cen.13270.
|