[1] |
Moon B, Chang S. Exosome as a Delivery Vehicle for Cancer Therapy[J]. Cells, 2022, 11(3):316. doi: 10.3390/cells11030316.
|
[2] |
Zhou Y, Zhang Y, Gong H, et al. The Role of Exosomes and Their Applications in Cancer[J]. Int J Mol Sci, 2021, 22(22):12204. doi: 10.3390/ijms222212204.
|
[3] |
Munagala R, Aqil F, Jeyabalan J, et al. Bovine milk-derived exosomes for drug delivery[J]. Cancer Lett, 2016, 371(1):48-61. doi: 10.1016/j.canlet.2015.10.020.
pmid: 26604130
|
[4] |
王华. 间充质干细胞及其来源的胞外囊泡[J]. 中国生物化学与分子生物学报, 2023, 39(3):354-363. doi: 10.13865/j.cnki.cjbmb.2022.10.1354.
|
[5] |
Meng W, He C, Hao Y, et al. Prospects and challenges of extracellular vesicle-based drug delivery system: considering cell source[J]. Drug Deliv, 2020, 27(1):585-598. doi: 10.1080/10717544.2020.1748758.
pmid: 32264719
|
[6] |
Roy A, Girija As S, Sankar Ganesh P, et al. Exosome Mediated Cancer Therapeutic Approach: Present Status and Future Prospectives[J]. Asian Pac J Cancer Prev, 2023, 24(2):363-373. doi: 10.31557/APJCP.2023.24.2.363.
|
[7] |
Zhong J, Xia B, Shan S, et al. High-quality milk exosomes as oral drug delivery system[J]. Biomaterials, 2021, 277:121126. doi: 10.1016/j.biomaterials.2021.121126.
|
[8] |
Kandimalla R, Aqil F, Tyagi N, et al. Milk exosomes: A biogenic nanocarrier for small molecules and macromolecules to combat cancer[J]. Am J Reprod Immunol, 2021, 85(2):e13349. doi: 10.1111/aji.13349.
|
[9] |
Timofeeva AM, Paramonik AP, Sedykh SS, et al. Milk Exosomes: Next-Generation Agents for Delivery of Anticancer Drugs and Therapeutic Nucleic Acids[J]. Int J Mol Sci, 2023, 24(12):10194. doi: 10.3390/ijms241210194.
|
[10] |
Peng H, Ji W, Zhao R, et al. Exosome: a significant nano-scale drug delivery carrier[J]. J Mater Chem B, 2020, 8(34):7591-7608. doi: 10.1039/d0tb01499k.
pmid: 32697267
|
[11] |
Zhao X, Wu D, Ma X, et al. Exosomes as drug carriers for cancer therapy and challenges regarding exosome uptake[J]. Biomed Pharmacother, 2020, 128:110237. doi: 10.1016/j.biopha.2020.110237.
pmid: 32470747
|
[12] |
Xi XM, Xia SJ, Lu R. Drug loading techniques for exosome-based drug delivery systems[J]. Pharmazie, 2021, 76(2):61-67. doi: 10.1691/ph.2021.0128.
|
[13] |
Elsharkasy OM, Nordin JZ, Hagey DW, et al. Extracellular vesicles as drug delivery systems: Why and how?[J]. Adv Drug Deliv Rev, 2020, 159:332-343. doi: 10.1016/j.addr.2020.04.004.
|
[14] |
Mulcahy LA, Pink RC, Carter DR. Routes and mechanisms of extracellular vesicle uptake[J]. J Extracell Vesicles, 2014 Aug 4;3. doi: 10.3402/jev.v3.24641.
|
[15] |
郝东霞, 田梦园, 刘洋, 等. 乳外泌体的基本性质及其应用[J]. 中国生物工程杂志, 2023, 43(2):26-42. doi: 10.13523/j.cb.2210010.
|
[16] |
Zhang Y, Li J, Gao W, et al. Exosomes as Anticancer Drug Delivery Vehicles: Prospects and Challenges[J]. Front Biosci(Landmark Ed), 2022, 27(10):293. doi: 10.31083/j.fbl2710293.
|
[17] |
张琪, 于湄, 刘磊, 等. 工程化外泌体研究现状与临床转化的挑战[J]. 中国组织工程研究, 2023, 27(19):3052-3060.
|
[18] |
Rajput A, Varshney A, Bajaj R, et al. Exosomes as New Generation Vehicles for Drug Delivery: Biomedical Applications and Future Perspectives[J]. Molecules, 2022, 27(21):7289. doi: 10.3390/molecules27217289.
|
[19] |
Chen Q, Shi J, Ruan D, et al. The diagnostic and therapeutic prospects of exosomes in ovarian cancer[J]. BJOG, 2023, 130(9):999-1006. doi: 10.1111/1471-0528.17446.
|
[20] |
Melzer C, Ohe JV, Hass R. Anti-Tumor Effects of Exosomes Derived from Drug-Incubated Permanently Growing Human MSC[J]. Int J Mol Sci, 2020, 21(19):7311. doi: 10.3390/ijms21197311.
|
[21] |
Qiu L, Wang J, Chen M, et al. Exosomal microRNA-146a derived from mesenchymal stem cells increases the sensitivity of ovarian cancer cells to docetaxel and taxane via a LAMC2-mediated PI3K/Akt axis[J]. Int J Mol Med, 2020, 46(2):609-620. doi: 10.3892/ijmm.2020.4634.
|
[22] |
Aqil F, Jeyabalan J, Agrawal AK, et al. Exosomal delivery of berry anthocyanidins for the management of ovarian cancer[J]. Food Funct, 2017, 8(11):4100-4107. doi: 10.1039/c7fo00882a.
pmid: 28991298
|
[23] |
Zhang X, Liu L, Tang M, et al. The effects of umbilical cord-derived macrophage exosomes loaded with cisplatin on the growth and drug resistance of ovarian cancer cells[J]. Drug Dev Ind Pharm, 2020, 46(7):1150-1162. doi: 10.1080/03639045.2020.1776320.
pmid: 32482115
|
[24] |
Luo H, Zhou Y, Zhang J, et al. NK cell-derived exosomes enhance the anti-tumor effects against ovarian cancer by delivering cisplatin and reactivating NK cell functions[J]. Front Immunol, 2022, 13:1087689. doi: 10.3389/fimmu.2022.1087689.
|
[25] |
Abas BI, Demirbolat GM, Cevik O. Wharton jelly-derived mesenchymal stem cell exosomes induce apoptosis and suppress EMT signaling in cervical cancer cells as an effective drug carrier system of paclitaxel[J]. PLoS One, 2022, 17(9):e0274607. doi: 10.1371/journal.pone.0274607.
|
[26] |
Aqil F, Munagala R, Jeyabalan J, et al. Exosomes for the Enhanced Tissue Bioavailability and Efficacy of Curcumin[J]. AAPS J, 2017, 19(6):1691-1702. doi: 10.1208/s12248-017-0154-9.
pmid: 29047044
|
[27] |
Abbasifarid E, Bolhassani A, Irani S, et al. Synergistic effects of exosomal crocin or curcumin compounds and HPV L1-E7 polypeptide vaccine construct on tumor eradication in C57BL/6 mouse model[J]. PLoS One, 2021, 16(10):e0258599. doi: 10.1371/journal.pone.0258599.
|
[28] |
常筱晗. 外泌体在子宫内膜癌诊断及治疗中的研究进展[J]. 中国微创外科杂志, 2023, 23(4):303-307. doi: 10.3969/j.issn.1009-6604.2023.04.013.
|
[29] |
Bogaczyk A, Zawlik I, Zuzak T, et al. The Role of miRNAs in the Development, Proliferation, and Progression of Endometrial Cancer[J]. Int J Mol Sci, 2023, 24(14):11489. doi: 10.3390/ijms241411489.
|
[30] |
Li BL, Lu W, Qu JJ, et al. Loss of exosomal miR-148b from cancer-associated fibroblasts promotes endometrial cancer cell invasion and cancer metastasis[J]. J Cell Physiol, 2019, 234(3):2943-2953. doi: 10.1002/jcp.27111.
|
[31] |
Zhou WJ, Zhang J, Xie F, et al. CD45RO-CD8+ T cell-derived exosomes restrict estrogen-driven endometrial cancer development via the ERβ/miR-765/PLP2/Notch axis[J]. Theranostics, 2021, 11(11):5330-5345. doi: 10.7150/thno.58337.
|
[32] |
Qian T, Yu X, Xu A, et al. tRF-20-S998LO9D inhibits endometrial carcinoma by upregulating SESN2[J]. Epigenomics, 2022, 14(24):1563-1577. doi: 10.2217/epi-2022-0349.
pmid: 36803014
|