[1] |
Li X, Zhong Y, Zhang X, et al. Spatiotemporal view of malignant histogenesis and macroevolution via formation of polyploid giant cancer cells[J]. Oncogene, 2023, 42(9):665-678. doi: 10.1038/s41388-022-02588-0.
pmid: 36596845
|
[2] |
Zhou X, Zhou M, Zheng M, et al. Polyploid giant cancer cells and cancer progression[J]. Front Cell Dev Biol, 2022,10:1017588. doi: 10.3389/fcell.2022.1017588.
|
[3] |
Forkner CE. The origin and fate of two types of multi-nucleated giant cells in the circulating blood[J]. J Exp Med, 1930, 52(2):279-297. doi: 10.1084/jem.52.2.279.
pmid: 19869765
|
[4] |
Heppner GH. Tumor heterogeneity[J]. Cancer Res, 1984, 44(6):2259-2265.
pmid: 6372991
|
[5] |
Solari F, Domenget C, Gire V, et al. Multinucleated cells can continuously generate mononucleated cells in the absence of mitosis: a study of cells of the avian osteoclast lineage[J]. J Cell Sci, 1995, 108(Pt 10):3233-3241. doi: 10.1242/jcs.108.10.3233.
|
[6] |
Erenpreisa JA, Cragg MS, Fringes B, et al. Release of mitotic descendants by giant cells from irradiated Burkitt's lymphoma cell line[J]. Cell Biol Int, 2000, 24(9):635-648. doi: 10.1006/cbir.2000.0558.
pmid: 10964453
|
[7] |
Erenpreisa J, Kalejs M, Ianzini F, et al. Segregation of genomes in polyploid tumour cells following mitotic catastrophe[J]. Cell Biol Int, 2005, 29(12):1005-1011. doi: 10.1016/j.cellbi.2005.10.008.
pmid: 16314119
|
[8] |
Niu N, Zhang J, Zhang N, et al. Linking genomic reorganization to tumor initiation via the giant cell cycle[J]. Oncogenesis, 2016, 5(12):e281. doi: 10.1038/oncsis.2016.75.
|
[9] |
Zhang S, Mercado-Uribe I, Xing Z, et al. Generation of cancer stem-like cells through the formation of polyploid giant cancer cells[J]. Oncogene, 2014, 33(1):116-128. doi: 10.1038/onc.2013.96.
pmid: 23524583
|
[10] |
You B, Xia T, Gu M, et al. AMPK-mTOR-Mediated Activation of Autophagy Promotes Formation of Dormant Polyploid Giant Cancer Cells[J]. Cancer Res, 2022, 82(5):846-858. doi: 10.1158/0008-5472.CAN-21-2342.
|
[11] |
Zhang Z, Feng X, Deng Z, et al. Irradiation-induced polyploid giant cancer cells are involved in tumor cell repopulation via neosis[J]. Mol Oncol, 2021, 15(8):2219-2234. doi: 10.1002/1878-0261.12913.
pmid: 33523579
|
[12] |
Lopez-Sánchez LM, Jimenez C, Valverde A, et al. CoCl2, a mimic of hypoxia, induces formation of polyploid giant cells with stem characteristics in colon cancer[J]. PLoS One, 2014, 9(6):e99143. doi: 10.1371/journal.pone.0099143.
|
[13] |
Mannan R, Wang X, Bawa PS, et al. Polypoidal giant cancer cells in metastatic castration-resistant prostate cancer: observations from the Michigan Legacy Tissue Program[J]. Med Oncol, 2020, 37(3):16. doi: 10.1007/s12032-020-1341-6.
pmid: 32030484
|
[14] |
Fei F, Qu J, Liu K, et al. The subcellular location of cyclin B1 and CDC25 associated with the formation of polyploid giant cancer cells and their clinicopathological significance[J]. Lab Invest, 2019, 99(4):483-498. doi: 10.1038/s41374-018-0157-x.
pmid: 30487595
|
[15] |
Adibi R, Moein S, Gheisari Y. Cisplatin-Resistant Ovarian Cancer Cells Reveal a Polyploid Phenotype with Remarkable Activation of Nuclear Processes[J]. Adv Biomed Res, 2023,12:77. doi: 10.4103/abr.abr_348_21.
|
[16] |
Zhang L, Wu C, Hoffman RM. Prostate Cancer Heterogeneous High-Metastatic Multi-Organ-Colonizing Chemo-Resistant Variants Selected by Serial Metastatic Passage in Nude Mice Are Highly Enriched for Multinucleate Giant Cells[J]. PLoS One, 2015, 10(11):e0140721. doi: 10.1371/journal.pone.0140721.
|
[17] |
Li Z, Zheng M, Zhang H, et al. Arsenic Trioxide Promotes Tumor Progression by Inducing the Formation of PGCCs and Embryonic Hemoglobin in Colon Cancer Cells[J]. Front Oncol, 2021,11:720814. doi: 10.3389/fonc.2021.720814.
|
[18] |
Tagal V, Roth MG. Loss of Aurora Kinase Signaling Allows Lung Cancer Cells to Adopt Endoreplication and Form Polyploid Giant Cancer Cells That Resist Antimitotic Drugs[J]. Cancer Res, 2021, 81(2):400-413. doi: 10.1158/0008-5472.CAN-20-1693.
pmid: 33172929
|
[19] |
Jiao Y, Yu Y, Zheng M, et al. Dormant cancer cells and polyploid giant cancer cells: The roots of cancer recurrence and metastasis[J]. Clin Transl Med, 2024, 14(2):e1567. doi: 10.1002/ctm2.1567.
pmid: 38362620
|
[20] |
徐磊, 武寒, 王苗苗, 等. 干预自噬调控p62-Keap1/Nrf2-GPX4通路对结直肠癌细胞铁死亡及奥沙利铂耐药的影响[J]. 临床与实验病理学杂志, 2024, 40(2):133-144. doi: 10.13315/j.cnki.cjcep.2024.02.006.
|
[21] |
陶克龙, 张振兴, 徐关根, 等. hsa-circ-002179靶向miR-143-3p调控自噬-凋亡平衡在胃癌5-氟尿嘧啶化疗耐药性中的作用研究[J]. 浙江中西医结合杂志, 2024, 34(1):21-27. doi: 10.3969/j.issn.1005-4561.2024.01.005.
|
[22] |
Bojko A, Staniak K, Czarnecka-Herok J, et al. Improved Autophagic Flux in Escapers from Doxorubicin-Induced Senescence/Polyploidy of Breast Cancer Cells[J]. Int J Mol Sci, 2020, 21(17):6084. doi: 10.3390/ijms21176084.
|
[23] |
White-Gilbertson S, Lu P, Saatci O, et al. Transcriptome analysis of polyploid giant cancer cells and their progeny reveals a functional role for p21 in polyploidization and depolyploidization[J]. J Biol Chem, 2024, 300(4):107136. doi: 10.1016/j.jbc.2024.107136.
|
[24] |
Zhang X, Yao J, Li X, et al. Targeting polyploid giant cancer cells potentiates a therapeutic response and overcomes resistance to PARP inhibitors in ovarian cancer[J]. Sci Adv, 2023, 9(29):eadf7195. doi: 10.1126/sciadv.adf7195.
|
[25] |
Färkkilä A, Rodríguez A, Oikkonen J, et al. Heterogeneity and Clonal Evolution of Acquired PARP Inhibitor Resistance in TP53- and BRCA1-Deficient Cells[J]. Cancer Res, 2021, 81(10):2774-2787. doi: 10.1158/0008-5472.CAN-20-2912.
pmid: 33514515
|
[26] |
Zheng L, Dai H, Zhou M, et al. Polyploid cells rewire DNA damage response networks to overcome replication stress-induced barriers for tumour progression[J]. Nat Commun, 2012,3:815. doi: 10.1038/ncomms1825.
|
[27] |
Thura M, Ye Z, Al-Aidaroos AQ, et al. PRL3 induces polypoid giant cancer cells eliminated by PRL3-zumab to reduce tumor relapse[J]. Commun Biol, 2021, 4(1):923. doi: 10.1038/s42003-021-02449-8.
pmid: 34326464
|
[28] |
Chen BW, Zhou Y, Wei T, et al. lncRNA-POIR promotes epithelial-mesenchymal transition and suppresses sorafenib sensitivity simultaneously in hepatocellular carcinoma by sponging miR-182-5p[J]. J Cell Biochem, 2021, 122(1):130-142. doi: 10.1002/jcb.29844.
|
[29] |
刘晓冬, 武晓萌, 王冬, 等. GP73通过EMT调节肝癌细胞对奥沙利铂耐药[J]. 药物评价研究, 2021, 44(5):1004-1009. doi: 10.7501/j.issn.1674-6376.2021.05.014.
|
[30] |
Fan L, Zheng M, Zhou X, et al. Molecular mechanism of vimentin nuclear localization associated with the migration and invasion of daughter cells derived from polyploid giant cancer cells[J]. J Transl Med, 2023, 21(1):719. doi: 10.1186/s12967-023-04585-7.
pmid: 37833712
|
[31] |
Xuan B, Ghosh D, Jiang J, et al. Vimentin filaments drive migratory persistence in polyploidal cancer cells[J]. Proc Natl Acad Sci U S A, 2020, 117(43):26756-26765. doi: 10.1073/pnas.2011912117.
|
[32] |
Thongchot S, Vidoni C, Ferraresi A, et al. Cancer-Associated Fibroblast-Derived IL-6 Determines Unfavorable Prognosis in Cholangiocarcinoma by Affecting Autophagy-Associated Chemoresponse[J]. Cancers (Basel), 2021, 13(9):2134. doi: 10.3390/cancers13092134.
|
[33] |
Zhou L, Li J, Liao M, et al. LncRNA MIR155HG induces M2 macrophage polarization and drug resistance of colorectal cancer cells by regulating ANXA2[J]. Cancer Immunol Immunother, 2022, 71(5):1075-1091. doi: 10.1007/s00262-021-03055-7.
|
[34] |
Min A, Mimura K, Nakajima S, et al. Therapeutic potential of anti-VEGF receptor 2 therapy targeting for M2-tumor-associated macrophages in colorectal cancer[J]. Cancer Immunol Immunother, 2021, 70(2):289-298. doi: 10.1007/s00262-020-02676-8.
|
[35] |
Parekh A, Das S, Parida S, et al. Multi-nucleated cells use ROS to induce breast cancer chemo-resistance in vitro and in vivo[J]. Oncogene, 2018, 37(33):4546-4561. doi: 10.1038/s41388-018-0272-6.
pmid: 29743594
|
[36] |
Liu Y, Shi Y, Wu M, et al. Hypoxia-induced polypoid giant cancer cells in glioma promote the transformation of tumor-associated macrophages to a tumor-supportive phenotype[J]. CNS Neurosci Ther, 2022, 28(9):1326-1338. doi: 10.1111/cns.13892.
|
[37] |
Niu N, Yao J, Bast RC, et al. IL-6 promotes drug resistance through formation of polyploid giant cancer cells and stromal fibroblast reprogramming[J]. Oncogenesis, 2021, 10(9):65. doi: 10.1038/s41389-021-00349-4.
pmid: 34588424
|