
国际妇产科学杂志 ›› 2025, Vol. 52 ›› Issue (4): 462-466.doi: 10.12280/gjfckx.20250022
收稿日期:2025-01-08
出版日期:2025-08-15
发布日期:2025-09-08
通讯作者:
吴瑞瑾,E-mail:作者简介:△审校者
ZHAO Ming, ZHAN Hong, WU Rui-jin△(
)
Received:2025-01-08
Published:2025-08-15
Online:2025-09-08
Contact:
WU Rui-jin, E-mail: 摘要:
早发性卵巢功能不全(premature ovarian insufficiency,POI)指育龄期女性过早出现卵巢功能衰退,可严重影响患者的生活质量和生育能力,其发病率呈逐年上升的趋势。目前以激素替代治疗(hormone replacement therapy,HRT)为主的传统治疗方式在一定程度上可以改善患者症状,但在恢复卵巢功能和实现生育方面效果有限。伴随再生医学的发展,富血小板血浆(platelet rich plasma,PRP)作为一种创新的生物学治疗再生策略,展示出促进组织修复和再生的巨大潜力。PRP富含多种生长因子,能够激活血管生成、细胞增殖、抗凋亡及细胞修复,为卵巢再生提供了可能性。目前的临床研究多为早期探索性试验,提示PRP可能改善卵巢微环境、激活卵泡发育、提高妊娠率,但由于样本量有限、缺乏大规模随机对照试验,相关证据仍需进一步验证。此外,PRP应用的安全性尚未完全明确,尽管目前尚未报道严重不良反应,但在其他领域存在感染、过敏等潜在风险。综述PRP在促进卵巢功能恢复中的潜在机制、临床应用现状及未来研究方向,旨在为临床治疗提供理论基础和研究方向。
赵铭, 詹宏, 吴瑞瑾. 富血小板血浆治疗早发性卵巢功能不全的研究进展[J]. 国际妇产科学杂志, 2025, 52(4): 462-466.
ZHAO Ming, ZHAN Hong, WU Rui-jin. Research Advances in Platelet Rich Plasma Therapy for Premature Ovarian Insufficiency[J]. Journal of International Obstetrics and Gynecology, 2025, 52(4): 462-466.
| 成分 | 作用机制 | 功能 |
|---|---|---|
| PDGF[ | 通过结合并激活2个结构相关的蛋白酪氨酸激酶受体(α受体和β受体)发挥其细胞效应;诱导肌动蛋白系统的重组并促使细胞沿着PDGF浓度梯度定向迁移;通过RAS-MAPK、PI3K和磷脂酶C-γ等信号通路发挥作用 | 促进血管生成;促进有丝分裂;活化巨噬细胞 |
| TGF-β[ | 是细胞生长和分化的关键调节蛋白,其中包括生长分化因子-9、骨形成蛋白-15,在早期卵泡发生和排卵中起重要作用;通过Smad2和Smad3发出信号,并转位到细胞核,调控靶基因的表达 | 促进组织再生愈合;调节炎症;诱导细胞增殖分化 |
| VEGF[ | 可作为颗粒细胞的生存因子;通过抑制胱天蛋白酶3的激活增强滤泡细胞的存活能力;通过激活PI3K/蛋白激酶B和丝裂原活化蛋白激酶激酶/ERK通路发挥作用 | 促进血管生成;抑制卵泡闭锁 |
| EGF[ | 是一种有效的上游功能因子;是CDC42的快速激活剂;通过提高CDC42-PI3K信号活性改善原始卵泡的瞬时激活;通过ERK1/2、PI3K等通路促进细胞减数分裂;通过MAPK和PI3K通路增强卵巢基质细胞的增殖 | 促进血管生成;促进细胞生成、增殖、分化 |
| HGF[ | 窦前卵泡抗细胞凋亡的关键调节因子;阻止可能导致卵泡闭锁的卵泡内类固醇的异常积累 | 促进血管生成;抑制细胞凋亡 |
| FGF[ | 是颗粒细胞内有效的有丝分裂因子,刺激颗粒细胞的DNA合成;通过抑制Hippo通路并上调活性Yes相关蛋白表达增强颗粒细胞的抗凋亡能力 | 促进血管生成;促进细胞增殖 |
| IGF-1[ | 调节颗粒细胞发育及功能的生长因子;以自分泌的形式刺激颗粒细胞的复制及分化 | 促进血管生成;抑制细胞凋亡;维持卵泡发育 |
表1 PRP中七大主要成分的作用机制及功能
| 成分 | 作用机制 | 功能 |
|---|---|---|
| PDGF[ | 通过结合并激活2个结构相关的蛋白酪氨酸激酶受体(α受体和β受体)发挥其细胞效应;诱导肌动蛋白系统的重组并促使细胞沿着PDGF浓度梯度定向迁移;通过RAS-MAPK、PI3K和磷脂酶C-γ等信号通路发挥作用 | 促进血管生成;促进有丝分裂;活化巨噬细胞 |
| TGF-β[ | 是细胞生长和分化的关键调节蛋白,其中包括生长分化因子-9、骨形成蛋白-15,在早期卵泡发生和排卵中起重要作用;通过Smad2和Smad3发出信号,并转位到细胞核,调控靶基因的表达 | 促进组织再生愈合;调节炎症;诱导细胞增殖分化 |
| VEGF[ | 可作为颗粒细胞的生存因子;通过抑制胱天蛋白酶3的激活增强滤泡细胞的存活能力;通过激活PI3K/蛋白激酶B和丝裂原活化蛋白激酶激酶/ERK通路发挥作用 | 促进血管生成;抑制卵泡闭锁 |
| EGF[ | 是一种有效的上游功能因子;是CDC42的快速激活剂;通过提高CDC42-PI3K信号活性改善原始卵泡的瞬时激活;通过ERK1/2、PI3K等通路促进细胞减数分裂;通过MAPK和PI3K通路增强卵巢基质细胞的增殖 | 促进血管生成;促进细胞生成、增殖、分化 |
| HGF[ | 窦前卵泡抗细胞凋亡的关键调节因子;阻止可能导致卵泡闭锁的卵泡内类固醇的异常积累 | 促进血管生成;抑制细胞凋亡 |
| FGF[ | 是颗粒细胞内有效的有丝分裂因子,刺激颗粒细胞的DNA合成;通过抑制Hippo通路并上调活性Yes相关蛋白表达增强颗粒细胞的抗凋亡能力 | 促进血管生成;促进细胞增殖 |
| IGF-1[ | 调节颗粒细胞发育及功能的生长因子;以自分泌的形式刺激颗粒细胞的复制及分化 | 促进血管生成;抑制细胞凋亡;维持卵泡发育 |
| 文献 | 组织 类型 | 动物 模型 | 干预措施 | 样本量 (只) | 研究结果 |
|---|---|---|---|---|---|
| Shivaramu等[ | 肝脏 | 大鼠 | 将大鼠随机分为空白对照组、干细胞组(5×106)、0.5 mL PRP组、0.35 mg/kg HGF组、干细胞+PRP组、干细胞+HGF组、PRP+HGF组、干细胞+PRP+HGF组,每组20只 | 160 | 联合治疗比单独使用PRP或HGF显示出更好的护肝作用;干细胞、PRP和HGF对胆汁淤积诱导的肝纤维化具有协同改善及再生的作用 |
| Marchante等[ | 卵巢 | 小鼠 | 将8周龄年轻小鼠、28周龄中年小鼠和36周龄老年小鼠分别随机分为10 μL生理盐水空白组、10 μL PRP组和10 μL干细胞+PRP组,每组4只 | 36 | PRP治疗激活卵泡的效率低于干细胞联合PRP治疗 |
| Zhang等[ | 骨关节 | 兔 | 将兔随机分为假手术组、0.3 mL生理盐水空白组、0.3 mL PRP组、0.3 mL干细胞组(1×106/mL)、0.3 mL干细胞+PRP组,每组10只 | 50 | PRP可增强干细胞的生物活性,包括增殖、迁移和黏附;联合治疗增强了软骨细胞的活性氧清除能力并抑制了细胞凋亡 |
| Akbari等[ | 神经 | 大鼠 | 将大鼠随机分为健康对照组、假手术组、PBS组、500 μL PRP组、干细胞组(1×106)、干细胞+PRP组 | 58 | 联合治疗组在空间记忆改善方面表现更好;仅有联合治疗组恢复了基底突触传递 |
表2 PRP与其他方案联合使用的实验研究
| 文献 | 组织 类型 | 动物 模型 | 干预措施 | 样本量 (只) | 研究结果 |
|---|---|---|---|---|---|
| Shivaramu等[ | 肝脏 | 大鼠 | 将大鼠随机分为空白对照组、干细胞组(5×106)、0.5 mL PRP组、0.35 mg/kg HGF组、干细胞+PRP组、干细胞+HGF组、PRP+HGF组、干细胞+PRP+HGF组,每组20只 | 160 | 联合治疗比单独使用PRP或HGF显示出更好的护肝作用;干细胞、PRP和HGF对胆汁淤积诱导的肝纤维化具有协同改善及再生的作用 |
| Marchante等[ | 卵巢 | 小鼠 | 将8周龄年轻小鼠、28周龄中年小鼠和36周龄老年小鼠分别随机分为10 μL生理盐水空白组、10 μL PRP组和10 μL干细胞+PRP组,每组4只 | 36 | PRP治疗激活卵泡的效率低于干细胞联合PRP治疗 |
| Zhang等[ | 骨关节 | 兔 | 将兔随机分为假手术组、0.3 mL生理盐水空白组、0.3 mL PRP组、0.3 mL干细胞组(1×106/mL)、0.3 mL干细胞+PRP组,每组10只 | 50 | PRP可增强干细胞的生物活性,包括增殖、迁移和黏附;联合治疗增强了软骨细胞的活性氧清除能力并抑制了细胞凋亡 |
| Akbari等[ | 神经 | 大鼠 | 将大鼠随机分为健康对照组、假手术组、PBS组、500 μL PRP组、干细胞组(1×106)、干细胞+PRP组 | 58 | 联合治疗组在空间记忆改善方面表现更好;仅有联合治疗组恢复了基底突触传递 |
| [1] | Panay N, Anderson RA, Bennie A, et al. Evidence-based guideline: premature ovarian insufficiency[J]. Hum Reprod Open, 2024, 2024(4):hoae065. doi: 10.1093/hropen/hoae065. |
| [2] |
"The 2022 Hormone Therapy Position Statement of The North American Menopause Society" Advisory Panel. The 2022 hormone therapy position statement of The North American Menopause Society[J]. Menopause, 2022, 29(7):767-794. doi: 10.1097/GME.0000000000002028.
pmid: 35797481 |
| [3] | Kuang X, Tang Y, Xu H, et al. The Evaluation of Ovarian Function Recovery Following Treatment of Primary Ovarian Insufficiency: A Systematic Review[J]. Front Endocrinol(Lausanne), 2022, 13:855992. doi: 10.3389/fendo.2022.855992. |
| [4] |
Wu M, Lu Z, Zhu Q, et al. DDX04+ Stem Cells in the Ovaries of Postmenopausal Women: Existence and Differentiation Potential[J]. Stem Cells, 2022, 40(1):88-101. doi: 10.1093/stmcls/sxab002.
pmid: 35511860 |
| [5] | Wang X, Li J, Lu W, et al. Therapeutic roles of platelet-rich plasma to restore female reproductive and endocrine dysfunction[J]. Front Endocrinol(Lausanne), 2024, 15:1374382. doi: 10.3389/fendo.2024.1374382. |
| [6] | Vaidakis D, Papapanou M, Siristatidis CS. Autologous platelet-rich plasma for assisted reproduction[J]. Cochrane Database Syst Rev, 2024, 4(4):CD013875. doi: 10.1002/14651858.CD013875.pub2. |
| [7] | Qiu D, Xiao X, Wang W, et al. Platelet-Rich Plasma Improves Pregnancy Outcomes in Moderate to Severe Intrauterine Adhesion: A Retrospective Cohort Study[J]. J Clin Med, 2023, 12(4):1319. doi: 10.3390/jcm12041319. |
| [8] | Nagy B, Kovács K, Sulyok E, et al. Thrombocytes and Platelet-Rich Plasma as Modulators of Reproduction and Fertility[J]. Int J Mol Sci, 2023, 24(24):17336. doi: 10.3390/ijms242417336. |
| [9] | Ahmadian S, Sheshpari S, Pazhang M, et al. Intra-ovarian injection of platelet-rich plasma into ovarian tissue promoted rejuvenation in the rat model of premature ovarian insufficiency and restored ovulation rate via angiogenesis modulation[J]. Reprod Biol Endocrinol, 2020, 18(1):78. doi: 10.1186/s12958-020-00638-4. |
| [10] | Liao K, Zhang X, Liu J, et al. The role of platelets in the regulation of tumor growth and metastasis: the mechanisms and targeted therapy[J]. Med Comm(2020), 2023, 4(5):e350. doi: 10.1002/mco2.350. |
| [11] | Del Amo C, Perez-Garrastachu M, Jauregui I, et al. Assessing Bioprinted Functionalized Grafts for Biological Tendon Augmentation In Vitro[J]. Int J Mol Sci, 2024, 25(9):4752. doi: 10.3390/ijms25094752. |
| [12] |
Furukawa K, Fujiwara H, Sato Y, et al. Platelets are novel regulators of neovascularization and luteinization during human corpus luteum formation[J]. Endocrinology, 2007, 148(7):3056-3064. doi:10.1210/en.2006-1687.
pmid: 17446191 |
| [13] | Bódis J. Role of platelets in female reproduction[J]. Hum Reprod, 2022, 37(2):384-385. doi: 10.1093/humrep/deab268. |
| [14] |
Xiu-Ying H, Yue-Xiang Z, Hui-Si Y, et al. PDGFBB facilitates tumorigenesis and malignancy of lung adenocarcinoma associated with PI3K-AKT/MAPK signaling[J]. Sci Rep, 2024, 14(1):4191. doi: 10.1038/s41598-024-54801-7.
pmid: 38378786 |
| [15] | Jiao Y, Jiang T, Lin Q, et al. Molecular characterization of the follicular development of BMP15-edited pigs[J]. Reproduction, 2023, 166(4):247-261. doi: 10.1530/REP-23-0034. |
| [16] |
Fang L, Sun YP, Cheng JC. The role of amphiregulin in ovarian function and disease[J]. Cell Mol Life Sci, 2023, 80(3):60. doi: 10.1007/s00018-023-04709-8.
pmid: 36749397 |
| [17] | Guzmán A, Hernández-Coronado CG, Gutiérrez CG, et al. The vascular endothelial growth factor (VEGF) system as a key regulator of ovarian follicle angiogenesis and growth[J]. Mol Reprod Dev, 2023, 90(4):201-217. doi: 10.1002/mrd.23683. |
| [18] | Zhang J, Yan L, Wang Y, et al. In vivo and in vitro activation of dormant primordial follicles by EGF treatment in mouse and human[J]. Clin Transl Med, 2020, 10(5):e182. doi: 10.1002/ctm2.182. |
| [19] |
Mi X, Chen C, Feng C, et al. The Functions and Application Prospects of Hepatocyte Growth Factor in Reproduction[J]. Curr Gene Ther, 2024, 24(5):347-355. doi: 10.2174/0115665232291010240221104445.
pmid: 39005061 |
| [20] | Cheng F, Wang J, Wang R, et al. FGF2 promotes the proliferation of injured granulosa cells in premature ovarian failure via Hippo-YAP signaling pathway[J]. Mol Cell Endocrinol, 2024, 589:112248. doi: 10.1016/j.mce.2024.112248. |
| [21] | Kordowitzki P, Krajnik K, Skowronska A, et al. Pleiotropic Effects of IGF1 on the Oocyte[J]. Cells, 2022, 11(10):1610. doi: 10.3390/cells11101610. |
| [22] | Tobita M, Uysal AC, Ogawa R, et al. Periodontal tissue regeneration with adipose-derived stem cells[J]. Tissue Eng Part A, 2008, 14(6):945-953. doi: 10.1089/ten.tea.2007.0048. |
| [23] |
Marinescu EA, Nica O, Cojocaru A, et al. Treatment of skin defects with PRP enriched with hyaluronic acid - histological aspects in rat model[J]. Rom J Morphol Embryol, 2022, 63(2):439-447. doi: 10.47162/RJME.63.2.15.
pmid: 36374149 |
| [24] | Huerta CT, Ortiz YY, Liu ZJ, et al. Methods and Limitations of Augmenting Mesenchymal Stem Cells for Therapeutic Applications[J]. Adv Wound Care(New Rochelle), 2023, 12(8):467-481. doi: 10.1089/wound.2022.0107. |
| [25] | Shivaramu S, Maiti SK, Banu SA, et al. Synergistic Hepatoprotective Effects of Mesenchymal Stem Cells and Platelet-Rich Plasma in a Rat Model of Bile Duct Ligation-Induced Liver Cirrhosis[J]. Cells, 2024, 13(5):404. doi: 10.3390/cells13050404. |
| [26] | Marchante M, Buigues A, Ramirez-Martin N, et al. Single intraovarian dose of stem cell- and platelet-secreted factors mitigates age-related ovarian infertility in a murine model[J]. Am J Obstet Gynecol, 2023, 228(5):561.e1-561.e17. doi: 10.1016/j.ajog.2023.01.018. |
| [27] | Zhang K, Xu T, Xie H, et al. Donor-Matched Peripheral Blood-Derived Mesenchymal Stem Cells Combined With Platelet-Rich Plasma Synergistically Ameliorate Surgery-Induced Osteoarthritis in Rabbits: An In Vitro and In Vivo Study[J]. Am J Sports Med, 2023, 51(11):3008-3024. doi: 10.1177/03635465231187042. |
| [28] | Akbari S, Haghani M, Ghobadi M, et al. Combination Therapy with Platelet-Rich Plasma and Epidermal Neural Crest Stem Cells Increases Treatment Efficacy in Vascular Dementia[J]. Stem Cells Int, 2023, 2023:3784843. doi: 10.1155/2023/3784843. |
| [29] | Merhi Z, Seckin S, Mouanness M. Intraovarian PRP Injection Improved Hot Flashes in a Woman With Very Low Ovarian Reserve[J]. Reprod Sci, 2022, 29(2):614-619. doi: 10.1007/s43032-021-00655-7. |
| [30] | Potiris A, Stavros S, Voros C, et al. Intraovarian Platelet-Rich Plasma Administration for Anovulatory Infertility: Preliminary Findings of a Prospective Cohort Study[J]. J Clin Med, 2024, 13(17):5292. doi: 10.3390/jcm13175292. |
| [31] | Sills ES, Petersen JL, Rickers NS, et al. Regenerative effect of intraovarian injection of activated autologous platelet rich plasma: serum anti-mullerian hormone levels measured among poor-prognosis in vitro fertilization patients[J/OL]. Int J Regen Med, 2020. [2020-03-18]. http://dx.doi.org/10.31487/j.RGM.2020.01.02. doi: 10.31487/j.rgm.2020.01.02. |
| [32] | Yu TN, Chen MJ, Lee TH, et al. Intraovarian platelet-rich plasma injection significantly improves blastocyst yield and quality in IVF patients[J]. Sci Rep, 2025, 15(1):1301. doi: 10.1038/s41598-024-82630-1. |
| [33] | Cakiroglu Y, Saltik A, Yuceturk A, et al. Effects of intraovarian injection of autologous platelet rich plasma on ovarian reserve and IVF outcome parameters in women with primary ovarian insufficiency[J]. Aging(Albany NY), 2020, 12(11):10211-10222. doi: 10.18632/aging.103403. |
| [34] | Moustakli E, Potiris A, Zikopoulos A, et al. Platelet-Rich Plasma (PRP) in Reproductive Medicine: A Critical Review of PRP Therapy in Low-Reserve and Premature Ovarian Insufficiency[J]. Biomedicines, 2025, 13(5):1257. doi: 10.3390/biomedicines13051257. |
| [35] | Molinaro P, Ballester A, Garcia-Velasco JA, et al. Impact of bilateral intraovarian platelet-rich plasma in women with poor ovarian response or primary ovarian insufficiency: a retrospective study[J]. Fertil Steril, 2025 May 14: S0015- 0282(25)00431-5. doi: 10.1016/j.fertnstert.2025.05.143. |
| [36] |
Arita A, Tobita M. Adverse events related to platelet-rich plasma therapy and future issues to be resolved[J]. Regen Ther, 2024, 26:496-501. doi: 10.1016/j.reth.2024.07.004.
pmid: 39100535 |
| [37] |
Sánchez-Garrido MA, García-Galiano D, Tena-Sempere M. Early programming of reproductive health and fertility: novel neuroendocrine mechanisms and implications in reproductive medicine[J]. Hum Reprod Update, 2022, 28(3):346-375. doi: 10.1093/humupd/dmac005.
pmid: 35187579 |
| [1] | 朱冉冉, 于春丽. 盆腔腹膜恶性间皮瘤一例[J]. 国际妇产科学杂志, 2025, 52(5): 508-511. |
| [2] | 冷亚文, 王宇, 吴效科. 人脐带间充质干细胞治疗多囊卵巢综合征的研究进展[J]. 国际妇产科学杂志, 2025, 52(5): 527-533. |
| [3] | 周丽, 张洪, 刘纯贤, 朱颖军. MRKH综合征伴一侧始基子宫腺肌病一例[J]. 国际妇产科学杂志, 2025, 52(5): 546-550. |
| [4] | 钟雅雯, 李瑞满. 妊娠期库欣综合征一例[J]. 国际妇产科学杂志, 2025, 52(5): 585-588. |
| [5] | 陈鲁美, 田春雷, 孙宗欣, 冯浩. 双绒毛膜双羊膜囊双胎孕16+6周一胎胎膜早破救治后成功分娩一例[J]. 国际妇产科学杂志, 2025, 52(5): 592-595. |
| [6] | 尹小青, 张健, 向雪芹, 李涛. 加拿大妇产科医师协会《妊娠期肝内胆汁淤积症的诊断和管理(2024)》解读[J]. 国际妇产科学杂志, 2025, 52(5): 596-600. |
| [7] | 姚政洋, 伍绍文, 刘瑞霞, 阴赪宏. 妊娠期高血压疾病与死胎关系的研究进展[J]. 国际妇产科学杂志, 2025, 52(4): 377-383. |
| [8] | 思彩霞, 程岳, 孙壬涟, 许飞雪. m6A甲基化修饰在子宫内膜癌中的研究进展[J]. 国际妇产科学杂志, 2025, 52(4): 414-419. |
| [9] | 张丽倩, 王宇, 高越, 白宇鑫, 范芮睿, 谢久梅, 吴效科. 槲皮素抗宫颈癌作用机制的研究进展[J]. 国际妇产科学杂志, 2025, 52(4): 425-430. |
| [10] | 袁梦, 李君芬, 吴岳霄, 杨永秀. 原发性卵巢子宫内膜间质肉瘤伴直肠转移一例[J]. 国际妇产科学杂志, 2025, 52(4): 439-442. |
| [11] | 张茹雯, 曹蕾. HPV18阳性宫颈腺样基底细胞癌一例[J]. 国际妇产科学杂志, 2025, 52(4): 443-446. |
| [12] | 张世霞, 闫宇, 万子华, 刘畅. 原发性输卵管癌肉瘤伴广泛网膜转移一例[J]. 国际妇产科学杂志, 2025, 52(4): 447-450. |
| [13] | 严莹, 杨洋, 钟华, 梁炎春. 地诺孕素治疗子宫腺肌病相关性疼痛的研究进展[J]. 国际妇产科学杂志, 2025, 52(3): 246-251. |
| [14] | 李飞艳, 朱从心, 李咏, 孙丽, 刘瑜. LNG-IUS固定术治疗子宫腺肌病期间发生大出血致重度贫血一例[J]. 国际妇产科学杂志, 2025, 52(3): 271-274. |
| [15] | 毛逍, 曲冬颖. 妊娠合并心脏病母婴风险评估及管理的研究进展[J]. 国际妇产科学杂志, 2025, 52(3): 286-292. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||