[1] |
Song J, Lu J, Wang E, et al. Short-term effects of ambient temperature on the risk of premature rupture of membranes in Xinxiang, China: A time-series analysis[J]. Sci Total Environ, 2019,689:1329-1335. doi: 10.1016/j.scitotenv.2019.06.457.
doi: 10.1016/j.scitotenv.2019.06.457
pmid: 31466169
|
[2] |
Niesłuchowska-Hoxha A, Cnota W, Czuba B, et al. A Retrospective Study on the Risk of Respiratory Distress Syndrome in Singleton Pregnancies with Preterm Premature Rupture of Membranes between 24+0 and 36+6 Weeks, Using Regression Analysis for Various Factors[J]. Biomed Res Int, 2018,2018:7162478. doi: 10.1155/2018/7162478.
doi: 10.1155/2018/7162478
pmid: 30402491
|
[3] |
Assefa NE, Berhe H, Girma F, et al. Correction to: Risk factors of premature rupture of membranes in public hospitals at Mekele city, Tigray, a case control study[J]. BMC Pregnancy Childbirth, 2020,20(1):28. doi: 10.1186/s12884-020-2723-7.
doi: 10.1186/s12884-020-2723-7
pmid: 31931777
|
[4] |
Ha S, Liu D, Zhu Y, et al. Acute Associations Between Outdoor Temperature and Premature Rupture of Membranes[J]. Epidemiology, 2018,29(2):175-182. doi: 10.1097/EDE.0000000000000779.
doi: 10.1097/EDE.0000000000000779
pmid: 29087988
|
[5] |
Bircher K, Ehret AE, Spiess D, et al. On the defect tolerance of fetal membranes[J]. Interface Focus, 2019,9(5):20190010. doi: 10.1098/rsfs.2019.0010.
doi: 10.1098/rsfs.2019.0010
pmid: 31485307
|
[6] |
Qi W, Zhao P, Wang W, et al. In vivo Assessment of Supra-Cervical Fetal Membrane by MRI 3D CISS: A Preliminary Study[J]. Front Physiol, 2020,11:639. doi: 10.3389/fphys.2020.00639.
doi: 10.3389/fphys.2020.00639
pmid: 32670086
|
[7] |
Cunningham SJ, Feng L, Allen TK, et al. Functional Genomics of Healthy and Pathological Fetal Membranes[J]. Front Physiol, 2020,11:687. doi: 10.3389/fphys.2020.00687.
doi: 10.3389/fphys.2020.00687
pmid: 32655414
|
[8] |
Mogami H, Kishore AH, Word RA. Collagen Type 1 Accelerates Healing of Ruptured Fetal Membranes[J]. Sci Rep, 2018,8(1):696. doi: 10.1038/s41598-017-18787-9.
doi: 10.1038/s41598-017-18787-9
pmid: 29330408
|
[9] |
Marom Y, Gengrinovitch S, Shalev E, et al. Collagen bundling and alignment in equibiaxially stretched human amnion[J]. J Biomech, 2020,108:109896. doi: 10.1016/j.jbiomech.2020.109896.
doi: 10.1016/j.jbiomech.2020.109896
pmid: 32636005
|
[10] |
Kumar D, Moore RM, Mercer BM, et al. In an in-vitro model using human fetal membranes, 17-α hydroxyprogesterone caproate is not an optimal progestogen for inhibition of fetal membrane weakening[J]. Am J Obstet Gynecol, 2017, 217(6):695.e1-695.e14. doi: 10.1016/j.ajog.2017.10.004.
doi: 10.1016/j.ajog.2017.10.004
|
[11] |
Menon R, Richardson LS, Lappas M. Fetal membrane architecture, aging and inflammation in pregnancy and parturition[J]. Placenta, 2019,79:40-45. doi: 10.1016/j.placenta.2018.11.003.
doi: 10.1016/j.placenta.2018.11.003
pmid: 30454905
|
[12] |
Richardson LS, Vargas G, Brown T, et al. Discovery and Characterization of Human Amniochorionic Membrane Microfractures[J]. Am J Pathol, 2017,187(12):2821-2830. doi: 10.1016/j.ajpath.2017.08.019.
doi: 10.1016/j.ajpath.2017.08.019
pmid: 28939208
|
[13] |
Kiyokawa H, Mogami H, Ueda Y, et al. Maternal Glucocorticoids Make the Fetal Membrane Thinner: Involvement of Amniotic Macrophages[J]. Endocrinology, 2019,160(4):925-937. doi: 10.1210/en.2018-01039.
doi: 10.1210/en.2018-01039
pmid: 30776301
|
[14] |
Yuan D, Sun G, Zhang R, et al. Connexin 43 expressed in endothelial cells modulates monocyte-endothelial adhesion by regulating cell adhesion proteins[J]. Mol Med Rep, 2015,12(5):7146-7152. doi: 10.3892/mmr.2015.4273.
doi: 10.3892/mmr.2015.4273
pmid: 26324251
|
[15] |
Li T, Niu J, Yu G, et al. Connexin 43 deletion in astrocytes promotes CNS remyelination by modulating local inflammation[J]. Glia, 2020,68(6):1201-1212. doi: 10.1002/glia.23770.
doi: 10.1002/glia.23770
pmid: 31868275
|
[16] |
Pohl U. Connexins: Key Players in the Control of Vascular Plasticity and Function[J]. Physiol Rev, 2020,100(2):525-572. doi: 10.1152/physrev.00010.2019.
doi: 10.1152/physrev.00010.2019
pmid: 31939708
|
[17] |
Solan JL, Lampe PD. Specific Cx43 phosphorylation events regulate gap junction turnover in vivo[J]. FEBS Lett, 2014,588(8):1423-1429. doi: 10.1016/j.febslet.2014.01.049.
doi: 10.1016/j.febslet.2014.01.049
|
[18] |
王宁, 张艳, 张珉, 等. 缝隙连接蛋白43对成纤维细胞中Ⅰ型胶原蛋白的调节作用[J]. 中国老年学杂志, 2019,39(10):2441-2445. doi: 10.3969/j.issn.1005-9202.2019.10.047.
|
[19] |
Peng Q, Yue C, Chen A, et al. Connexin 43 is involved in early differentiation of human embryonic stem cells[J]. Differentiation, 2019,105:33-44. doi: 10.1016/j.diff.2018.12.003.
doi: 10.1016/j.diff.2018.12.003
pmid: 30599359
|
[20] |
Shin KT, Nie ZW, Zhou W, et al. Connexin 43 Knockdown Induces Mitochondrial Dysfunction and Affects Early Developmental Competence in Porcine Embryos[J]. Microsc Microanal, 2020,26(2):287-296. doi: 10.1017/S1431927620000033.
doi: 10.1017/S1431927620000033
pmid: 32036801
|
[21] |
Xu D, He H, Liu D, et al. A novel role of SIRT2 in regulating gap junction communications via connexin-43 in bovine cumulus-oocyte complexes[J]. J Cell Physiol, 2020,235(10):7332-7343. doi: 10.1002/jcp.29634.
doi: 10.1002/jcp.29634
pmid: 32039484
|
[22] |
Liu G, Tang Y, Han Y, et al. Effects of COH on the expression of connexin43 in endometrial stromal cells[J]. Taiwan J Obstet Gynecol, 2019,58(5):592-597. doi: 10.1016/j.tjog.2019.07.003.
doi: 10.1016/j.tjog.2019.07.003
pmid: 31542077
|
[23] |
Kamal D, Ibrahim SF, Mokhtar MH. Effects of Testosterone on the Expression of Connexin 26 and Connexin 43 in the Uterus of Rats During Early Pregnancy[J]. In Vivo, 2020,34(4):1863-1870. doi: 10.21873/invivo.11981.
doi: 10.21873/invivo.11981
pmid: 32606156
|
[24] |
Ou CW, Orsino A, Lye SJ. Expression of connexin-43 and connexin-26 in the rat myometrium during pregnancy and labor is differentially regulated by mechanical and hormonal signals[J]. Endocrinology, 1997,138(12):5398-5407. doi: 10.1210/endo.138.12.5624.
doi: 10.1210/endo.138.12.5624
pmid: 9389525
|
[25] |
文晓荣, 莫红梅, 丁梦婷. 过表达间隙连接蛋白43表达对宫颈癌细胞恶性生物学行为的影响[J]. 中国肿瘤临床与康复, 2019,26(3):337-341. doi: 10.13455/j.cnki.cjcor.2019.03.23.
|
[26] |
马彩辉, 古少君. 体外受精-胚胎移植失败者子宫内膜整合素β3及细胞间隙连接蛋白43的表达研究[J]. 中国医刊, 2018,53(6):623-625. doi: 10.3969/j.issn.1008-1070.2018.06.013.
|
[27] |
王艳艳, 崔世红, 程国梅, 等. Cx43、Bax和Bcl-2在胎膜早破患者胎膜组织中的表达及意义[J]. 中国妇产科临床杂志, 2009,10(1):45-48. doi: 10.3969/j.issn.1672-1861.2009.01.013.
|
[28] |
Barrett DW, Kethees A, Thrasivoulou C, et al. Trauma induces overexpression of Cx43 in human fetal membrane defects[J]. Prenat Diagn, 2017,37(9):899-906. doi: 10.1002/pd.5104.
doi: 10.1002/pd.5104
pmid: 28664994
|
[29] |
Barrett DW, John RK, Thrasivoulou C, et al. Targeting mechanotransduction mechanisms and tissue weakening signals in the human amniotic membrane[J]. Sci Rep, 2019,9(1):6718. doi: 10.1038/s41598-019-42379-4.
pmid: 31040291
|
[30] |
Tarzemany R, Jiang G, Jiang JX, et al. Connexin 43 regulates the expression of wound healing-related genes in human gingival and skin fibroblasts[J]. Exp Cell Res, 2018,367(2):150-161. doi: 10.1016/j.yexcr.2018.03.031.
doi: 10.1016/j.yexcr.2018.03.031
pmid: 29596891
|
[31] |
Montgomery J, Ghatnekar GS, Grek CL, et al. Connexin 43-Based Therapeutics for Dermal Wound Healing[J]. Int J Mol Sci, 2018,19(6):1778. doi: 10.3390/ijms19061778.
doi: 10.3390/ijms19061778
|
[32] |
Cogliati B, Vinken M, Silva TC, et al. Connexin 43 deficiency accelerates skin wound healing and extracellular matrix remodeling in mice[J]. J Dermatol Sci, 2015,79(1):50-56. doi: 10.1016/j.jdermsci.2015.03.019.
doi: 10.1016/j.jdermsci.2015.03.019
pmid: 25900674
|
[33] |
Barrett DW, David AL, Thrasivoulou C, et al. Connexin 43 is overexpressed in human fetal membrane defects after fetoscopic surgery[J]. Prenat Diagn, 2016,36(10):942-952. doi: 10.1002/pd.4917.
pmid: 27568096
|