
国际妇产科学杂志 ›› 2022, Vol. 49 ›› Issue (1): 116-120.doi: 10.12280/gjfckx.20210716
• 普通妇科疾病及相关研究:综述 • 上一篇
收稿日期:2021-07-30
出版日期:2022-02-15
发布日期:2022-03-02
通讯作者:
赵志梅
E-mail:zhaozhim2003@aliyun.com
基金资助:
HAN Le, MA Rui-hong, ZHAO Zhi-mei△(
), XIA Tian
Received:2021-07-30
Published:2022-02-15
Online:2022-03-02
Contact:
ZHAO Zhi-mei
E-mail:zhaozhim2003@aliyun.com
摘要:
胰岛素抵抗(insulin resistance,IR)不仅是各种代谢性疾病的重要病因之一,也是影响女性生殖功能的一项重要因素。近年IR对女性生殖功能的影响越来越受到国内外学者的重视,并从不同角度、不同层面对IR影响女性生殖功能的问题进行了一系列研究。IR通过扰乱卵母细胞线粒体功能,破坏氧化与抗氧化的平衡状态,产生炎症因子,使卵母细胞质量下降,线粒体功能损伤加重IR,卵母细胞质量进一步下降,如此形成恶行循环。IR通过影响子宫内膜的能量代谢、AMP活化蛋白激酶(AMP-activated protein kinase,AMPK)通路和磷脂酰肌醇3激酶/蛋白激酶B(phosphatidylinositol 3-kinase/protein kinase B,PI3K/Akt)通路分子的表达、慢性炎症状态以及其他微小分子的表达,使子宫内膜容受性下降,最终导致生育能力降低。此外,多种不良妊娠结局及妊娠并发症也与IR有关,如IR是自然流产的一个危险因素,妊娠前IR会增加妊娠期糖尿病的发生率,也会增加后代出现葡萄糖耐受不良、巨大儿、肥胖和高血压等的风险。
韩乐, 马瑞红, 赵志梅, 夏天. 胰岛素抵抗对女性生殖功能的影响[J]. 国际妇产科学杂志, 2022, 49(1): 116-120.
HAN Le, MA Rui-hong, ZHAO Zhi-mei, XIA Tian. The Effect of Insulin Resistance on Female Reproductive Function[J]. Journal of International Obstetrics and Gynecology, 2022, 49(1): 116-120.
| [1] |
孙英冬, 马凯. Ghrelin与肥胖、胰岛素抵抗和2型糖尿病的研究进展[J]. 中国糖尿病杂志, 2017, 25(7):666-669. doi: 10.3969/j.issn.1006-6187.2017.07.020.
doi: 10.3969/j.issn.1006-6187.2017.07.020 |
| [2] |
Sleigh A, Raymond-Barker P, Thackray K, et al. Mitochondrial dysfunction in patients with primary congenital insulin resistance[J]. J Clin Invest, 2011, 121(6):2457-2461. doi: 10.1172/JCI46405.
doi: 10.1172/JCI46405 |
| [3] |
Zhang D, Keilty D, Zhang ZF, et al. Mitochondria in oocyte aging: current understanding[J]. Facts Views Vis Obgyn, 2017, 9(1):29-38.
pmid: 28721182 |
| [4] |
Boirie Y. Insulin regulation of mitochondrial proteins and oxidative phosphorylation in human muscle[J]. Trends Endocrinol Metab, 2003, 14(9):393-394. doi: 10.1016/j.tem.2003.09.002.
doi: 10.1016/j.tem.2003.09.002 |
| [5] |
Kim JA, Wei Y, Sowers JR. Role of mitochondrial dysfunction in insulin resistance[J]. Circ Res, 2008, 102(4):401-414. doi: 10.1161/CIRCRESAHA.107.165472.
doi: 10.1161/CIRCRESAHA.107.165472 |
| [6] |
Ou XH, Li S, Wang ZB, et al. Maternal insulin resistance causes oxidative stress and mitochondrial dysfunction in mouse oocytes[J]. Hum Reprod, 2012, 27(7):2130-2145. doi: 10.1093/humrep/des137.
doi: 10.1093/humrep/des137 |
| [7] |
Zeng X, Huang Q, Long SL, et al. Mitochondrial Dysfunction in Polycystic Ovary Syndrome[J]. DNA Cell Biol, 2020, 39(8):1401-1409. doi: 10.1089/dna.2019.5172.
doi: 10.1089/dna.2019.5172 |
| [8] |
张燕, 康卉娴, 包俊华. 血清炎症细胞因子与多囊卵巢综合征不孕症患者IVF-ET助孕妊娠结局的相关性分析[J]. 中国妇幼保健, 2021, 36(1):113-117. doi: 10.19829/j.zgfybj.issn.1001-4411.2021.01.039.
doi: 10.19829/j.zgfybj.issn.1001-4411.2021.01.039 |
| [9] |
Daneshjou D, Zadeh Modarres S, Soleimani Mehranjani M, et al. Comparing the effect of sitagliptin and metformin on the oocyte and embryo quality in classic PCOS patients undergoing ICSI[J]. Ir J Med Sci, 2021, 190(2):685-692. doi: 10.1007/s11845-020-02320-5.
doi: 10.1007/s11845-020-02320-5 |
| [10] |
Xiang S, Xia MF, Song JY, et al. Effect of Electro-acupuncture on Expression of IRS-1/PI3K/GLUT4 Pathway in Ovarian Granulosa Cells of Infertile Patients with Polycystic Ovary Syndrome-Insulin Resistance of Phlegm-Dampness Syndrome[J]. Chin J Integr Med, 2021, 27(5):330-335. doi: 10.1007/s11655-020-3219-z.
doi: 10.1007/s11655-020-3219-z |
| [11] |
Yan S, Wang F, Shi Q. The effect of maternal high-fat-diet mediated oxidative stress on ovarian function in mice offspring[J]. Exp Ther Med, 2020, 20(6):135. doi: 10.3892/etm.2020.9264.
doi: 10.3892/etm.2020.9264 |
| [12] |
Shukla P, Mukherjee S. Mitochondrial dysfunction: An emerging link in the pathophysiology of polycystic ovary syndrome[J]. Mitochondrion, 2020, 52:24-39. doi: 10.1016/j.mito.2020.02.006.
doi: 10.1016/j.mito.2020.02.006 |
| [13] |
Ma YD, Cui ZH, Zhao D, et al. The Effects of Altered Endometrial Glucose Homeostasis on Embryo Implantation in Type 2 Diabetic Mice[J]. Reprod Sci, 2021, 28(3):703-714. doi: 10.1007/s43032-020-00365-6.
doi: 10.1007/s43032-020-00365-6 |
| [14] |
He FF, Li YM. Role of gut microbiota in the development of insulin resistance and the mechanism underlying polycystic ovary syndrome: a review[J]. J Ovarian Res, 2020, 13(1):73. doi: 10.1186/s13048-020-00670-3.
doi: 10.1186/s13048-020-00670-3 |
| [15] |
Zhang XQ, Zhao D, Ma YD, et al. Impact of Disturbed Glucose Homeostasis Regulated by AMPK in Endometrium on Embryo Implantation in Diabetes Mice[J]. Reprod Sci, 2020, 27(9):1752-1757. doi: 10.1007/s43032-020-00169-8.
doi: 10.1007/s43032-020-00169-8 |
| [16] |
Jiao Z, Chen Y, Xie Y, et al. Metformin protects against insulin resistance induced by high uric acid in cardiomyocytes via AMPK signalling pathways in vitro and in vivo[J]. J Cell Mol Med, 2021, 25(14):6733-6745. doi: 10.1111/jcmm.16677.
doi: 10.1111/jcmm.16677 |
| [17] |
Zhang C, Yang C, Li N, et al. Elevated insulin levels compromise endometrial decidualization in mice with decrease in uterine apoptosis in early-stage pregnancy[J]. Arch Toxicol, 2019, 93(12):3601-3615. doi: 10.1007/s00204-019-02601-8.
doi: 10.1007/s00204-019-02601-8 pmid: 31642978 |
| [18] |
Zhang W, Zuo M, Lu J, et al. Adiponectin Reduces Embryonic Loss Rate and Ameliorates Trophoblast Apoptosis in Early Pregnancy of Mice with Polycystic Ovary Syndrome by Affecting the AMPK/PI3K/Akt/FoxO3a Signaling Pathway[J]. Reprod Sci, 2020, 27(12):2232-2241. doi: 10.1007/s43032-020-00237-z.
doi: 10.1007/s43032-020-00237-z |
| [19] |
Tersigni C, Vatish M, D’Ippolito S, et al. Abnormal uterine inflammation in obstetric syndromes: molecular insights into the role of chemokine decoy receptor D6 and inflammasome NLRP3[J]. Mol Hum Reprod, 2020, 26(2):111-121. doi: 10.1093/molehr/gaz067.
doi: 10.1093/molehr/gaz067 pmid: 32030415 |
| [20] |
Rudnicka E, Suchta K, Grymowicz M, et al. Chronic Low Grade Inflammation in Pathogenesis of PCOS[J]. Int J Mol Sci, 2021, 22(7):3789. doi: 10.3390/ijms22073789.
doi: 10.3390/ijms22073789 |
| [21] |
Zeinali F, Aghaei Zarch SM, Jahan-Mihan A, et al. Circulating microRNA-122, microRNA-126-3p and microRNA-146a are associated with inflammation in patients with pre-diabetes and type 2 diabetes mellitus: A case control study[J]. PLoS One, 2021, 16(6):e0251697. doi: 10.1371/journal.pone.0251697.
doi: 10.1371/journal.pone.0251697 pmid: 34077450 |
| [22] |
Zhai J, Yao GD, Wang JY, et al. Metformin Regulates Key MicroRNAs to Improve Endometrial Receptivity Through Increasing Implantation Marker Gene Expression in Patients with PCOS Undergoing IVF/ICSI[J]. Reprod Sci, 2019, 26(11):1439-1448. doi: 10.1177/1933719118820466.
doi: 10.1177/1933719118820466 pmid: 30599813 |
| [23] |
Li R, Wu J, He J, et al. Mice endometrium receptivity in early pregnancy is impaired by maternal hyperinsulinemia[J]. Mol Med Rep, 2017, 15(5):2503-2510. doi: 10.3892/mmr.2017.6322.
doi: 10.3892/mmr.2017.6322 |
| [24] |
Sun YF, Zhang J, Xu YM, et al. High BMI and Insulin Resistance Are Risk Factors for Spontaneous Abortion in Patients With Polycystic Ovary Syndrome Undergoing Assisted Reproductive Treatment: A Systematic Review and Meta-Analysis[J]. Front Endocrinol(Lausanne), 2020, 11:592495. doi: 10.3389/fendo.2020.592495.
doi: 10.3389/fendo.2020.592495 |
| [25] |
Guarnotta V, Mineo MI, Giacchetto E, et al. Maternal-foetal complications in pregnancy: a retrospective comparison between type 1 and type 2 diabetes mellitus[J]. BMC Pregnancy Childbirth, 2021, 21(1):243. doi: 10.1186/s12884-021-03702-y.
doi: 10.1186/s12884-021-03702-y |
| [26] |
Zhang Y, Zhao W, Xu H, et al. Hyperandrogenism and insulin resistance-induced fetal loss: evidence for placental mitochondrial abnormalities and elevated reactive oxygen species production in pregnant rats that mimic the clinical features of polycystic ovary syndrome[J]. J Physiol, 2019, 597(15):3927-3950. doi: 10.1113/JP277879.
doi: 10.1113/JP277879 |
| [27] |
Yan Y, Bao S, Sheng S, et al. Insulin resistance in patients with recurrent pregnancy loss is associated with lymphocyte population aberration[J]. Syst Biol Reprod Med, 2017, 63(6):397-404. doi: 10.1080/19396368.2017.1378936.
doi: 10.1080/19396368.2017.1378936 pmid: 29087729 |
| [28] |
Hu M, Zhang Y, Guo X, et al. Hyperandrogenism and insulin resistance induce gravid uterine defects in association with mitochondrial dysfunction and aberrant reactive oxygen species production[J]. Am J Physiol Endocrinol Metab, 2019, 316(5):E794-E809. doi: 10.1152/ajpendo.00359.2018.
doi: 10.1152/ajpendo.00359.2018 |
| [29] |
Xia H, Zhang R, Sun X, et al. Valuable predictors of gestational diabetes mellitus in infertile Chinese women with polycystic ovary syndrome: a prospective cohort study[J]. Gynecol Endocrinol, 2017, 33(6):448-451. doi: 10.1080/09513590.2017.1290074.
doi: 10.1080/09513590.2017.1290074 |
| [30] |
Poblete JA, Olmos P. Obesity and Gestational Diabetes in Pregnant Care and Clinical Practice[J]. Curr Vasc Pharmacol, 2021, 19(2):154-164. doi: 10.2174/1570161118666200628142353.
doi: 10.2174/1570161118666200628142353 |
| [31] |
Wei D, Zhang B, Shi Y, et al. Effect of Preconception Impaired Glucose Tolerance on Pregnancy Outcomes in Women With Polycystic Ovary Syndrome[J]. J Clin Endocrinol Metab, 2017, 102(10):3822-3829. doi: 10.1210/jc.2017-01294.
doi: 10.1210/jc.2017-01294 |
| [32] |
Tam WH, Ma R, Ozaki R, et al. In Utero Exposure to Maternal Hyperglycemia Increases Childhood Cardiometabolic Risk in Offspring[J]. Diabetes Care, 2017, 40(5):679-686. doi: 10.2337/dc16-2397.
doi: 10.2337/dc16-2397 |
| [33] |
Bianco ME, Kuang A, Josefson JL, et al. Hyperglycemia and Adverse Pregnancy Outcome Follow-Up Study: newborn anthropometrics and childhood glucose metabolism[J]. Diabetologia, 2021, 64(3):561-570. doi: 10.1007/s00125-020-05331-0.
doi: 10.1007/s00125-020-05331-0 |
| [34] |
Lowe WL Jr, Scholtens DM, Kuang A, et al. Hyperglycemia and Adverse Pregnancy Outcome Follow-up Study (HAPO FUS): Maternal Gestational Diabetes Mellitus and Childhood Glucose Metabolism[J]. Diabetes Care, 2019, 42(3):372-380. doi: 10.2337/dc18-1646.
doi: 10.2337/dc18-1646 |
| [1] | 马玲, 李亚西, 赵敏, 王静, 李红丽. 细胞凋亡与不良妊娠结局关系的研究进展[J]. 国际妇产科学杂志, 2025, 52(2): 121-126. |
| [2] | 侯春艳, 杜秀萍, 王红红, 侯岳洋. 高迁移率族蛋白A2在胎儿生长受限发病机制中的研究进展[J]. 国际妇产科学杂志, 2025, 52(2): 127-131. |
| [3] | 曹秀蓉, 周文柏, 范香, 王逸斐, 朱鹏峰. 单细胞RNA测序解析子宫内膜异位症血管生成机制[J]. 国际妇产科学杂志, 2025, 52(2): 199-205. |
| [4] | 殷婷, 丛慧芳. 子宫内膜异位症与痛觉敏化的免疫学研究进展[J]. 国际妇产科学杂志, 2025, 52(2): 206-210. |
| [5] | 江爱美, 张信美. 腹壁子宫内膜异位症的治疗进展[J]. 国际妇产科学杂志, 2025, 52(2): 211-216. |
| [6] | 王佳凝, 闫颖, 张晗, 褚梦圆, 张心怡. 沉默信息调节因子家族在女性生殖衰老中的机制研究进展[J]. 国际妇产科学杂志, 2025, 52(2): 222-227. |
| [7] | 白耀俊, 王思瑶, 令菲菲, 张森淮, 李红丽, 刘畅. Trop-2及靶向Trop-2抗体偶联药物在妇科恶性肿瘤中的应用进展[J]. 国际妇产科学杂志, 2025, 52(1): 1-7. |
| [8] | 耿昊, 陈叙. 早产的产程特点及产时管理[J]. 国际妇产科学杂志, 2025, 52(1): 105-109. |
| [9] | 张云凤, 张宛玥, 卢悦, 王阳阳, 井佳雨, 牟婧祎, 王悦. ARID1A与PIK3CA突变在卵巢子宫内膜异位症恶变中的研究进展[J]. 国际妇产科学杂志, 2025, 52(1): 19-22. |
| [10] | 袁海宁, 牟珍妮, 张江琳, 李恒兵, 张云洁, 孙振高. 高龄卵母细胞质量与端粒酶的关联及机制[J]. 国际妇产科学杂志, 2025, 52(1): 57-60. |
| [11] | 石百超, 王宇, 常惠, 卢凤娟, 关木馨, 余健楠, 吴效科. 中药及天然产物改善子宫内膜异位症的作用机制[J]. 国际妇产科学杂志, 2025, 52(1): 66-71. |
| [12] | 李恒兵, 袁海宁, 张云洁, 张江琳, 郭子珍, 孙振高. 外泌体通过调控免疫微环境治疗慢性子宫内膜炎的研究进展[J]. 国际妇产科学杂志, 2025, 52(1): 72-78. |
| [13] | 马国霞, 王佳丽, 苗贺瑱, 闫宇, 刘佳佳, 杨永秀. 妊娠合并Ebstein畸形二例[J]. 国际妇产科学杂志, 2024, 51(6): 624-628. |
| [14] | 周婷, 梁宝权. 卵巢子宫内膜样癌合并Trousseau综合征一例[J]. 国际妇产科学杂志, 2024, 51(6): 676-679. |
| [15] | 郭希, 刘思敏, 魏佳, 杨永秀. 卵巢及输卵管子宫内膜异位症恶变为透明细胞癌一例[J]. 国际妇产科学杂志, 2024, 51(6): 680-683. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||