[1] |
Salama NM, Zaghlol SS, Mohamed HH, et al. Suppression of the inflammation and fibrosis in Asherman syndrome rat model by mesenchymal stem cells: histological and immunohistochemical studies[J]. Folia Histochem Cytobiol, 2020, 58(3):208-218. doi: 10.5603/FHC.a2020.0024.
doi: 10.5603/FHC.a2020.0024
|
[2] |
Du H, Naqvi H, Taylor HS. Ischemia/reperfusion injury promotes and granulocyte-colony stimulating factor inhibits migration of bone marrow-derived stem cells to endometrium[J]. Stem Cells Dev, 2012, 21(18):3324-3331. doi: 10.1089/scd.2011.0193.
doi: 10.1089/scd.2011.0193
|
[3] |
Benor A, Gay S, DeCherney A. An update on stem cell therapy for Asherman syndrome[J]. J Assist Reprod Genet, 2020, 37(7):1511-1529. doi: 10.1007/s10815-020-01801-x.
doi: 10.1007/s10815-020-01801-x
|
[4] |
Monsef F, Artimani T, Alizadeh Z, et al. Comparison of the regenerative effects of bone marrow/adipose-derived stem cells in the Asherman model following local or systemic administration[J]. J Assist Reprod Genet, 2020, 37(8):1861-1868. doi: 10.1007/s10815-020-01856-w.
doi: 10.1007/s10815-020-01856-w
|
[5] |
Jiang X, Li X, Fei X, et al. Endometrial membrane organoids from human embryonic stem cell combined with the 3D Matrigel for endometrium regeneration in asherman syndrome[J]. Bioact Mater, 2021, 6(11):3935-3946. doi: 10.1016/j.bioactmat.2021.04.006.
doi: 10.1016/j.bioactmat.2021.04.006
|
[6] |
Kikano E, Grosse Hokamp N, Ciancibello L, et al. Utility of virtual monoenergetic images from spectral detector computed tomography in improving image segmentation for purposes of 3D printing and modeling[J]. 3D Print Med, 2019, 5(1):1. doi: 10.1186/s41205-019-0038-y.
doi: 10.1186/s41205-019-0038-y
pmid: 30659415
|
[7] |
Zadpoor AA, Malda J. Additive Manufacturing of Biomaterials, Tissues, and Organs[J]. Ann Biomed Eng, 2017, 45(1):1-11. doi: 10.1007/s10439-016-1719-y.
doi: 10.1007/s10439-016-1719-y
pmid: 27632024
|
[8] |
Mishra A, Srivastava V. Biomaterials and 3D printing techniques used in the medical field[J]. J Med Eng Technol, 2021, 45(4):290-302. doi: 10.1080/03091902.2021.1893845.
doi: 10.1080/03091902.2021.1893845
|
[9] |
Tse C, Smith PJ. Inkjet Printing for Biomedical Applications[J]. Methods Mol Biol, 2018, 1771:107-117. doi: 10.1007/978-1-4939-7792-5_9.
doi: 10.1007/978-1-4939-7792-5_9
|
[10] |
Hakobyan D, Kerouredan O, Remy M, et al. Laser-Assisted Bioprinting for Bone Repair[J]. Methods Mol Biol, 2020, 2140:135-144. doi: 10.1007/978-1-0716-0520-2_8.
doi: 10.1007/978-1-0716-0520-2_8
pmid: 32207109
|
[11] |
Malda J, Visser J, Melchels FP, et al. 25th anniversary article: Engineering hydrogels for biofabrication[J]. Adv Mater, 2013, 25(36):5011-5028. doi: 10.1002/adma.201302042.
doi: 10.1002/adma.201302042
|
[12] |
Ji S, Guvendiren M. Complex 3D bioprinting methods[J]. APL Bioeng, 2021, 5(1):011508. doi: 10.1063/5.0034901.
doi: 10.1063/5.0034901
|
[13] |
Gao G, Schilling AF, Yonezawa T, et al. Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells[J]. Biotechnol J, 2014, 9(10):1304-1311. doi: 10.1002/biot.201400305.
doi: 10.1002/biot.201400305
|
[14] |
Mandrycky C, Wang Z, Kim K, et al. 3D bioprinting for engineering complex tissues[J]. Biotechnol Adv, 2016, 34(4):422-434. doi: 10.1016/j.biotechadv.2015.12.011.
doi: 10.1016/j.biotechadv.2015.12.011
|
[15] |
Wang W, Jin S, Ye K. Development of Islet Organoids from H9 Human Embryonic Stem Cells in Biomimetic 3D Scaffolds[J]. Stem Cells Dev, 2017, 26(6):394-404. doi: 10.1089/scd.2016.0115.
doi: 10.1089/scd.2016.0115
|
[16] |
Mahendiran B, Muthusamy S, Sampath S, et al. Recent trends in natural polysaccharide based bioinks for multiscale 3D printing in tissue regeneration: A review[J]. Int J Biol Macromol, 2021, 183:564-588. doi: 10.1016/j.ijbiomac.2021.04.179.
doi: 10.1016/j.ijbiomac.2021.04.179
pmid: 33933542
|
[17] |
Meng X, Ichim TE, Zhong J, et al. Endometrial regenerative cells: a novel stem cell population[J]. J Transl Med, 2007, 5:57. doi: 10.1186/1479-5876-5-57.
doi: 10.1186/1479-5876-5-57
|
[18] |
Chen L, Qu J, Xiang C. The multi-functional roles of menstrual blood-derived stem cells in regenerative medicine[J]. Stem Cell Res Ther, 2019, 10(1):1. doi: 10.1186/s13287-018-1105-9.
doi: 10.1186/s13287-018-1105-9
|
[19] |
Tan J, Li P, Wang Q, et al. Autologous menstrual blood-derived stromal cells transplantation for severe Asherman′s syndrome[J]. Hum Reprod, 2016, 31(12):2723-2729. doi: 10.1093/humrep/dew235.
doi: 10.1093/humrep/dew235
|
[20] |
Azizi R, Aghebati-Maleki L, Nouri M, et al. Stem cell therapy in Asherman syndrome and thin endometrium: Stem cell- based therapy[J]. Biomed Pharmacother, 2018, 102:333-343. doi: 10.1016/j.biopha.2018.03.091.
doi: 10.1016/j.biopha.2018.03.091
|
[21] |
Sun H, Lu J, Li B, et al. Partial regeneration of uterine horns in rats through adipose-derived stem cell sheets[J]. Biol Reprod, 2018, 99(5):1057-1069. doi: 10.1093/biolre/ioy121.
doi: 10.1093/biolre/ioy121
|
[22] |
Alawadhi F, Du H, Cakmak H, et al. Bone Marrow-Derived Stem Cell (BMDSC) transplantation improves fertility in a murine model of Asherman′s syndrome[J]. PLoS One, 2014, 9(5):e96662. doi: 10.1371/journal.pone.0096662.
doi: 10.1371/journal.pone.0096662
|
[23] |
Santamaria X, Cabanillas S, Cervelló I, et al. Autologous cell therapy with CD133+ bone marrow-derived stem cells for refractory Asherman′s syndrome and endometrial atrophy: a pilot cohort study[J]. Hum Reprod, 2016, 31(5):1087-1096. doi: 10.1093/humrep/dew042.
doi: 10.1093/humrep/dew042
|
[24] |
Zhang J, Wehrle E, Rubert M, et al. 3D Bioprinting of Human Tissues: Biofabrication, Bioinks, and Bioreactors[J]. Int J Mol Sci, 2021, 22(8):3971. doi: 10.3390/ijms22083971.
doi: 10.3390/ijms22083971
|
[25] |
Zhang YS, Yue K, Aleman J, et al. 3D Bioprinting for Tissue and Organ Fabrication[J]. Ann Biomed Eng, 2017, 45(1):148-163. doi: 10.1007/s10439-016-1612-8.
doi: 10.1007/s10439-016-1612-8
|
[26] |
Wang X, Dai X, Zhang X, et al. 3D bioprinted glioma cell-laden scaffolds enriching glioma stem cells via epithelial-mesenchymal transition[J]. J Biomed Mater Res A, 2019, 107(2):383-391. doi: 10.1002/jbm.a.36549.
doi: 10.1002/jbm.a.36549
|
[27] |
Wang X, Li X, Dai X, et al. Bioprinting of glioma stem cells improves their endotheliogenic potential[J]. Colloids Surf B Biointerfaces, 2018, 171:629-637. doi: 10.1016/j.colsurfb.2018.08.006.
doi: 10.1016/j.colsurfb.2018.08.006
|
[28] |
Ji W, Hou B, Lin W, et al. 3D Bioprinting a human iPSC-derived MSC-loaded scaffold for repair of the uterine endometrium[J]. Acta Biomater, 2020, 116:268-284. doi: 10.1016/j.actbio.2020.09.012.
doi: 10.1016/j.actbio.2020.09.012
|
[29] |
Zheng SX, Wang J, Wang XL, et al. Feasibility analysis of treating severe intrauterine adhesions by transplanting menstrual blood-derived stem cells[J]. Int J Mol Med, 2018, 41(4):2201-2212. doi: 10.3892/ijmm.2018.3415.
doi: 10.3892/ijmm.2018.3415
|
[30] |
Ferlin KM, Prendergast ME, Miller ML, et al. Influence of 3D printed porous architecture on mesenchymal stem cell enrichment and differentiation[J]. Acta Biomater, 2016, 32:161-169. doi: 10.1016/j.actbio.2016.01.007.
doi: 10.1016/j.actbio.2016.01.007
|