国际妇产科学杂志 ›› 2022, Vol. 49 ›› Issue (2): 176-180.doi: 10.12280/gjfckx.20211126
收稿日期:
2021-12-08
出版日期:
2022-04-15
发布日期:
2022-05-09
通讯作者:
姚书忠
E-mail:yaoshuzh@mail.sysu.edu.cn
基金资助:
Received:
2021-12-08
Published:
2022-04-15
Online:
2022-05-09
Contact:
YAO Shu-zhong
E-mail:yaoshuzh@mail.sysu.edu.cn
摘要:
近年来,肿瘤精准治疗及愈来愈深入的肿瘤机制研究对肿瘤研究模型提出了更高的要求。肿瘤类器官,一种来源于干细胞的体外3D肿瘤模型,因其对肿瘤体内形态结构及生物学特性的模拟,引起了广泛的关注。多项研究表明,与肿瘤细胞系、原代细胞等常用的肿瘤模型相比,肿瘤类器官直接来源于患者,更能体现患者特有的肿瘤体细胞突变和生物学特性。由于类器官能在短时间内实现体外大规模扩增,对肿瘤类器官进行高通量药物筛选可作为患者精准治疗的参考。此外,类器官能模拟体内肿瘤微环境,保留细胞与细胞、细胞与细胞外基质的相互影响;同时类器官在体外可被基因编辑。类器官的这些特性使其成为适于在肿瘤精准治疗及基础研究中推广应用的体外肿瘤模型。
黄华, 姚书忠. 类器官在肿瘤研究中的应用[J]. 国际妇产科学杂志, 2022, 49(2): 176-180.
HUANG Hua, YAO Shu-zhong. Application of Organoid in Cancer Research[J]. Journal of International Obstetrics and Gynecology, 2022, 49(2): 176-180.
[1] |
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5):646-674. doi: 10.1016/j.cell.2011.02.013.
doi: 10.1016/j.cell.2011.02.013 |
[2] |
Stadler M, Walter S, Walzl A, et al. Increased complexity in carcinomas: Analyzing and modeling the interaction of human cancer cells with their microenvironment[J]. Semin Cancer Biol, 2015, 35:107-124. doi: 10.1016/j.semcancer.2015.08.007.
doi: 10.1016/j.semcancer.2015.08.007 pmid: 26320002 |
[3] |
Li M, Izpisua Belmonte JC. Organoids-Preclinical Models of Human Disease[J]. N Engl J Med, 2019, 380(6):569-579. doi: 10.1056/NEJMra1806175.
doi: 10.1056/NEJMra1806175 |
[4] |
Clevers H. Modeling Development and Disease with Organoids[J]. Cell, 2016, 165(7):1586-1597. doi: 10.1016/j.cell.2016.05.082.
doi: S0092-8674(16)30729-2 pmid: 27315476 |
[5] |
Nath S, Devi GR. Three-dimensional culture systems in cancer research: Focus on tumor spheroid model[J]. Pharmacol Ther, 2016, 163:94-108. doi: 10.1016/j.pharmthera.2016.03.013.
doi: 10.1016/j.pharmthera.2016.03.013 |
[6] |
Tuveson D, Clevers H. Cancer modeling meets human organoid technology[J]. Science, 2019, 364(6444):952-955. doi: 10.1126/science.aaw6985.
doi: 10.1126/science.aaw6985 pmid: 31171691 |
[7] |
Laurent J, Frongia C, Cazales M, et al. Multicellular tumor spheroid models to explore cell cycle checkpoints in 3D[J]. BMC Cancer, 2013, 13:73. doi: 10.1186/1471-2407-13-73.
doi: 10.1186/1471-2407-13-73 |
[8] |
Drost J, Clevers H. Organoids in cancer research[J]. Nat Rev Cancer, 2018, 18(7):407-418. doi: 10.1038/s41568-018-0007-6.
doi: 10.1038/s41568-018-0007-6 |
[9] |
Papapetrou EP. Patient-derived induced pluripotent stem cells in cancer research and precision oncology[J]. Nat Med, 2016, 22(12):1392-1401. doi: 10.1038/nm.4238.
doi: 10.1038/nm.4238 pmid: 27923030 |
[10] |
Broutier L, Mastrogiovanni G, Verstegen MM, et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening[J]. Nat Med, 2017, 23(12):1424-1435. doi: 10.1038/nm.4438.
doi: 10.1038/nm.4438 pmid: 29131160 |
[11] |
van de Wetering M, Francies HE, Francis JM, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients[J]. Cell, 2015, 161(4):933-945. doi: 10.1016/j.cell.2015.03.053.
doi: 10.1016/j.cell.2015.03.053 pmid: 25957691 |
[12] |
Maru Y, Tanaka N, Ebisawa K, et al. Establishment and characterization of patient-derived organoids from a young patient with cervical clear cell carcinoma[J]. Cancer Sci, 2019, 110(9):2992-3005. doi: 10.1111/cas.14119.
doi: 10.1111/cas.14119 |
[13] |
Yan HHN, Siu HC, Law S, et al. A Comprehensive Human Gastric Cancer Organoid Biobank Captures Tumor Subtype Heterogeneity and Enables Therapeutic Screening[J]. Cell Stem Cell, 2018, 23(6):882-897.e11. doi: 10.1016/j.stem.2018.09.016.
doi: 10.1016/j.stem.2018.09.016 |
[14] |
Mazzucchelli S, Piccotti F, Allevi R, et al. Establishment and Morphological Characterization of Patient-Derived Organoids from Breast Cancer[J]. Biol Proced Online, 2019, 21:12. doi: 10.1186/s12575-019-0099-8.
doi: 10.1186/s12575-019-0099-8 pmid: 31223292 |
[15] |
Boj SF, Hwang CI, Baker LA, et al. Organoid models of human and mouse ductal pancreatic cancer[J]. Cell, 2015, 160(1/2):324-338. doi: 10.1016/j.cell.2014.12.021.
doi: 10.1016/j.cell.2014.12.021 |
[16] |
Weber C. A biobank for bladder cancer[J]. Nat Cell Biol, 2018, 20(6):634. doi: 10.1038/s41556-018-0114-3.
doi: 10.1038/s41556-018-0114-3 |
[17] |
Kopper O, de Witte CJ, Lõhmussaar K, et al. An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity[J]. Nat Med, 2019, 25(5):838-849. doi: 10.1038/s41591-019-0422-6.
doi: 10.1038/s41591-019-0422-6 pmid: 31011202 |
[18] |
Lin M, Gao M, Cavnar MJ, et al. Utilizing gastric cancer organoids to assess tumor biology and personalize medicine[J]. World J Gastrointest Oncol, 2019, 11(7):509-517. doi: 10.4251/wjgo.v11.i7.509.
doi: 10.4251/wjgo.v11.i7.509 |
[19] |
Choi SI, Jeon AR, Kim MK, et al. Development of Patient-Derived Preclinical Platform for Metastatic Pancreatic Cancer: PDOX and a Subsequent Organoid Model System Using Percutaneous Biopsy Samples[J]. Front Oncol, 2019, 9:875. doi: 10.3389/fonc.2019.00875.
doi: 10.3389/fonc.2019.00875 pmid: 31572675 |
[20] |
Sachs N, de Ligt J, Kopper O, et al. A Living Biobank of Breast Cancer Organoids Captures Disease Heterogeneity[J]. Cell, 2018, 172(1/2):373-386.e10. doi: 10.1016/j.cell.2017.11.010.
doi: 10.1016/j.cell.2017.11.010 |
[21] |
Driehuis E, van Hoeck A, Moore K, et al. Pancreatic cancer organoids recapitulate disease and allow personalized drug screening[J]. Proc Natl Acad Sci U S A, 2019, 116(52):26580-26590. doi: 10.1073/pnas.1911273116.
doi: 10.1073/pnas.1911273116 |
[22] |
Byrne AT, Alférez DG, Amant F, et al. Interrogating open issues in cancer precision medicine with patient-derived xenografts[J]. Nat Rev Cancer, 2017, 17(4):254-268. doi: 10.1038/nrc.2016.140.
doi: 10.1038/nrc.2016.140 |
[23] |
Jung J, Seol HS, Chang S. The Generation and Application of Patient-Derived Xenograft Model for Cancer Research[J]. Cancer Res Treat, 2018, 50(1):1-10. doi: 10.4143/crt.2017.307.
doi: 10.4143/crt.2017.307 |
[24] |
Ganesh K, Wu C, O′Rourke KP, et al. A rectal cancer organoid platform to study individual responses to chemoradiation[J]. Nat Med, 2019, 25(10):1607-1614. doi: 10.1038/s41591-019-0584-2.
doi: 10.1038/s41591-019-0584-2 |
[25] |
Yao Y, Xu X, Yang L, et al. Patient-Derived Organoids Predict Chemoradiation Responses of Locally Advanced Rectal Cancer[J]. Cell Stem Cell, 2020, 26(1):17-26.e6. doi: 10.1016/j.stem.2019.10.010.
doi: S1934-5909(19)30431-X pmid: 31761724 |
[26] |
Weeber F, Ooft SN, Dijkstra KK, et al. Tumor Organoids as a Pre-clinical Cancer Model for Drug Discovery[J]. Cell Chem Biol, 2017, 24(9):1092-1100. doi: 10.1016/j.chembiol.2017.06.012.
doi: S2451-9456(17)30226-X pmid: 28757181 |
[27] |
Guo WM, Loh XJ, Tan EY, et al. Development of a magnetic 3D spheroid platform with potential application for high-throughput drug screening[J]. Mol Pharm, 2014, 11(7):2182-2189. doi: 10.1021/mp5000604.
doi: 10.1021/mp5000604 |
[28] |
Gao H, Korn JM, Ferretti S, et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response[J]. Nat Med, 2015, 21(11):1318-1325. doi: 10.1038/nm.3954.
doi: 10.1038/nm.3954 |
[29] |
DiMasi JA, Reichert JM, Feldman L, et al. Clinical approval success rates for investigational cancer drugs[J]. Clin Pharmacol Ther, 2013, 94(3):329-335. doi: 10.1038/clpt.2013.117.
doi: 10.1038/clpt.2013.117 pmid: 23739536 |
[30] |
Dhimolea E, de Matos Simoes R, Kansara D, et al. An Embryonic Diapause-like Adaptation with Suppressed Myc Activity Enables Tumor Treatment Persistence[J]. Cancer Cell, 2021, 39(2):240-256.e11. doi: 10.1016/j.ccell.2020.12.002.
doi: 10.1016/j.ccell.2020.12.002 pmid: 33417832 |
[31] |
Vlachogiannis G, Hedayat S, Vatsiou A, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers[J]. Science, 2018, 359(6378):920-926. doi: 10.1126/science.aao2774.
doi: 10.1126/science.aao2774 pmid: 29472484 |
[32] |
Jabs J, Zickgraf FM, Park J, et al. Screening drug effects in patient-derived cancer cells links organoid responses to genome alterations[J]. Mol Syst Biol, 2017, 13(11):955. doi: 10.15252/msb.20177697.
doi: 10.15252/msb.20177697 |
[33] |
Skardal A, Shupe T, Atala A. Organoid-on-a-chip and body-on-a-chip systems for drug screening and disease modeling[J]. Drug Discov Today, 2016, 21(9):1399-1411. doi: 10.1016/j.drudis.2016.07.003.
doi: 10.1016/j.drudis.2016.07.003 |
[34] |
Drost J, van Jaarsveld RH, Ponsioen B, et al. Sequential cancer mutations in cultured human intestinal stem cells[J]. Nature, 2015, 521(7550):43-47. doi: 10.1038/nature14415.
doi: 10.1038/nature14415 |
[35] |
Matano M, Date S, Shimokawa M, et al. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids[J]. Nat Med, 2015, 21(3):256-262. doi: 10.1038/nm.3802.
doi: 10.1038/nm.3802 pmid: 25706875 |
[36] |
Tsai S, McOlash L, Palen K, et al. Development of primary human pancreatic cancer organoids, matched stromal and immune cells and 3D tumor microenvironment models[J]. BMC Cancer, 2018, 18(1):335. doi: 10.1186/s12885-018-4238-4.
doi: 10.1186/s12885-018-4238-4 |
[37] |
Neal JT, Li X, Zhu J, et al. Organoid Modeling of the Tumor Immune Microenvironment[J]. Cell, 2018, 175(7):1972-1988.e16. doi: 10.1016/j.cell.2018.11.021.
doi: 10.1016/j.cell.2018.11.021 |
[1] | 张昊晟, 魏芳. Nectin-4在妇科恶性肿瘤中的研究进展[J]. 国际妇产科学杂志, 2025, 52(2): 165-168. |
[2] | 郭竞, 张茂祥, 周春鹤, 刘思宁, 李惠艳. 孟德尔随机化在暴露因素与宫颈癌因果关系中的研究进展[J]. 国际妇产科学杂志, 2025, 52(2): 169-174. |
[3] | 柴玲娜, 李艳丽, 石洁, 高晗, 欧阳夕颜, 程诗语. 吲哚菁绿示踪前哨淋巴结在早期宫颈癌中的应用[J]. 国际妇产科学杂志, 2025, 52(2): 175-179. |
[4] | 林环宇, 邵小光, 路旭宏, 王秋月, 魏巍, 佟春艳. Web of Science核心数据库2004—2024年女性恶性肿瘤患者生育力保存的研究现状及热点[J]. 国际妇产科学杂志, 2025, 52(2): 180-186. |
[5] | 尹雨鑫, 王长河. 高龄女性盆腔深部侵袭性血管黏液瘤一例[J]. 国际妇产科学杂志, 2025, 52(2): 191-194. |
[6] | 王佳丽, 马国霞, 魏佳, 刘思敏, 杨永秀. 生殖系统T淋巴母细胞淋巴瘤一例[J]. 国际妇产科学杂志, 2025, 52(2): 195-199. |
[7] | 白耀俊, 王思瑶, 令菲菲, 张森淮, 李红丽, 刘畅. Trop-2及靶向Trop-2抗体偶联药物在妇科恶性肿瘤中的应用进展[J]. 国际妇产科学杂志, 2025, 52(1): 1-7. |
[8] | 胡明珠, 刘丽文, 黄蕾. HIV感染女性的阴道微生态变化与宫颈癌的相关研究[J]. 国际妇产科学杂志, 2025, 52(1): 13-18. |
[9] | 张云凤, 张宛玥, 卢悦, 王阳阳, 井佳雨, 牟婧祎, 王悦. ARID1A与PIK3CA突变在卵巢子宫内膜异位症恶变中的研究进展[J]. 国际妇产科学杂志, 2025, 52(1): 19-22. |
[10] | 李楠, 彭二玄, 刘风花. 卵巢上皮性癌脑转移20例临床分析[J]. 国际妇产科学杂志, 2025, 52(1): 23-27. |
[11] | 潘琪, 冯同富, 金晶, 吴莺, 杜欣. 腹腔镜切除成人腹膜后巨大成熟性畸胎瘤一例[J]. 国际妇产科学杂志, 2025, 52(1): 28-31. |
[12] | 贾炎峰, 吴珍珍, 王维红, 王玥元, 李娟. 原发性卵巢腺鳞癌一例[J]. 国际妇产科学杂志, 2025, 52(1): 32-36. |
[13] | 宋丽芳, 吴珍珍, 毛宝宏, 赵小丽, 刘青. 卵巢癌腹股沟淋巴结孤立转移一例[J]. 国际妇产科学杂志, 2025, 52(1): 37-41. |
[14] | 罗娜, 陈艳. 恶性潜能未定的子宫平滑肌瘤宫腔镜切除术后复发全子宫切除术一例[J]. 国际妇产科学杂志, 2025, 52(1): 42-45. |
[15] | 张野, 陈巧云, 赵佳怡, 陈璐, 刘建荣. 纳米微球在宫颈癌预防与治疗中的应用进展[J]. 国际妇产科学杂志, 2025, 52(1): 8-12. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||