[1] |
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3):209-249. doi: 10.3322/caac.21660.
doi: 10.3322/caac.21660
|
[2] |
Maiorano BA, Maiorano MFP, Lorusso D, et al. Ovarian Cancer in the Era of Immune Checkpoint Inhibitors: State of the Art and Future Perspectives[J]. Cancers(Basel), 2021, 13(17):4438. doi: 10.3390/cancers13174438.
doi: 10.3390/cancers13174438
|
[3] |
Liu S, Kasherman L, Fazelzad R, et al. The use of bevacizumab in the modern era of targeted therapy for ovarian cancer: A systematic review and meta-analysis[J]. Gynecol Oncol, 2021, 161(2):601-612. doi: 10.1016/j.ygyno.2021.01.028.
doi: 10.1016/j.ygyno.2021.01.028
|
[4] |
Faro A, Boj SF, Clevers H. Fishing for intestinal cancer models: unraveling gastrointestinal homeostasis and tumorigenesis in zebrafish[J]. Zebrafish, 2009, 6(4):361-376. doi: 10.1089/zeb.2009.0617.
doi: 10.1089/zeb.2009.0617
pmid: 19929219
|
[5] |
Sato T, Stange DE, Ferrante M, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett′s epithelium[J]. Gastroenterology, 2011, 141(5):1762-1772. doi: 10.1053/j.gastro.2011.07.050.
doi: 10.1053/j.gastro.2011.07.050
|
[6] |
Broutier L, Mastrogiovanni G, Verstegen MM, et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening[J]. Nat Med, 2017, 23(12):1424-1435. doi: 10.1038/nm.4438.
doi: 10.1038/nm.4438
pmid: 29131160
|
[7] |
Sachs N, de Ligt J, Kopper O, et al. A Living Biobank of Breast Cancer Organoids Captures Disease Heterogeneity[J]. Cell, 2018, 172(1/2):373-386.e10. doi: 10.1016/j.cell.2017.11.010.
doi: 10.1016/j.cell.2017.11.010
|
[8] |
Hill SJ, Decker B, Roberts EA, et al. Prediction of DNA Repair Inhibitor Response in Short-Term Patient-Derived Ovarian Cancer Organoids[J]. Cancer Discov, 2018, 8(11):1404-1421. doi: 10.1158/2159-8290.CD-18-0474.
doi: 10.1158/2159-8290.CD-18-0474
|
[9] |
Kopper O, de Witte CJ, Lõhmussaar K, et al. An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity[J]. Nat Med, 2019, 25(5):838-849. doi: 10.1038/s41591-019-0422-6.
doi: 10.1038/s41591-019-0422-6
pmid: 31011202
|
[10] |
Phan N, Hong JJ, Tofig B, et al. A simple high-throughput approach identifies actionable drug sensitivities in patient-derived tumor organoids[J]. Commun Biol, 2019, 2:78. doi: 10.1038/s42003-019-0305-x.
doi: 10.1038/s42003-019-0305-x
|
[11] |
Hart PC, Bajwa P, Kenny HA. Modeling the Early Steps of Ovarian Cancer Dissemination in an Organotypic Culture of the Human Peritoneal Cavity[J]. Adv Exp Med Biol, 2021, 1330:75-94. doi: 10.1007/978-3-030-73359-9_5.
doi: 10.1007/978-3-030-73359-9_5
|
[12] |
Maenhoudt N, Defraye C, Boretto M, et al. Developing Organoids from Ovarian Cancer as Experimental and Preclinical Models[J]. Stem Cell Reports, 2020, 14(4):717-729. doi: 10.1016/j.stemcr.2020.03.004.
doi: S2213-6711(20)30094-1
pmid: 32243841
|
[13] |
Jabs J, Zickgraf FM, Park J, et al. Screening drug effects in patient-derived cancer cells links organoid responses to genome alterations[J]. Mol Syst Biol, 2017, 13(11):955. doi: 10.15252/msb.20177697.
doi: 10.15252/msb.20177697
|
[14] |
Ye W, Luo C, Li C, et al. Organoids to study immune functions, immunological diseases and immunotherapy[J]. Cancer Lett, 2020, 477:31-40. doi: 10.1016/j.canlet.2020.02.027.
doi: 10.1016/j.canlet.2020.02.027
|
[15] |
Usui T, Sakurai M, Enjoji S, et al. Establishment of a Novel Model for Anticancer Drug Resistance in Three-Dimensional Primary Culture of Tumor Microenvironment[J]. Stem Cells Int, 2016, 2016:7053872. doi: 10.1155/2016/7053872.
doi: 10.1155/2016/7053872
|
[16] |
Liu X, Flinders C, Mumenthaler SM, et al. MALDI Mass Spectrometry Imaging for Evaluation of Therapeutics in Colorectal Tumor Organoids[J]. J Am Soc Mass Spectrom, 2018, 29(3):516-526. doi: 10.1007/s13361-017-1851-4.
doi: 10.1007/s13361-017-1851-4
|
[17] |
Nanki Y, Chiyoda T, Hirasawa A, et al. Patient-derived ovarian cancer organoids capture the genomic profiles of primary tumours applicable for drug sensitivity and resistance testing[J]. Sci Rep, 2020, 10(1):12581. doi: 10.1038/s41598-020-69488-9.
doi: 10.1038/s41598-020-69488-9
|
[18] |
Lengyel E, Burdette JE, Kenny HA, et al. Epithelial ovarian cancer experimental models[J]. Oncogene, 2014, 33(28):3619-3633. doi: 10.1038/onc.2013.321.
doi: 10.1038/onc.2013.321
pmid: 23934194
|
[19] |
Byrne AT, Alférez DG, Amant F, et al. Interrogating open issues in cancer precision medicine with patient-derived xenografts[J]. Nat Rev Cancer, 2017, 17(4):254-268. doi: 10.1038/nrc.2016.140.
doi: 10.1038/nrc.2016.140
|
[20] |
Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid technologies[J]. Science, 2014, 345(6194):1247125. doi: 10.1126/science.1247125.
doi: 10.1126/science.1247125
|
[21] |
Koshiyama M, Matsumura N, Konishi I. Recent concepts of ovarian carcinogenesis: type I and type II[J]. Biomed Res Int, 2014, 2014:934261. doi: 10.1155/2014/934261.
doi: 10.1155/2014/934261
|
[22] |
Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression[J]. J Cell Biol, 2012, 196(4):395-406. doi: 10.1083/jcb.201102147.
doi: 10.1083/jcb.201102147
|
[23] |
Hynes RO. The extracellular matrix: not just pretty fibrils[J]. Science, 2009, 326(5957):1216-1219. doi: 10.1126/science.1176009.
doi: 10.1126/science.1176009
|
[24] |
McMillin DW, Negri JM, Mitsiades CS. The role of tumour-stromal interactions in modifying drug response: challenges and opportunities[J]. Nat Rev Drug Discov, 2013, 12(3):217-228. doi: 10.1038/nrd3870.
doi: 10.1038/nrd3870
pmid: 23449307
|
[25] |
Hidalgo M, Amant F, Biankin AV, et al. Patient-derived xenograft models: an emerging platform for translational cancer research[J]. Cancer Discov, 2014, 4(9):998-1013. doi: 10.1158/2159-8290.CD-14-0001.
doi: 10.1158/2159-8290.CD-14-0001
pmid: 25185190
|
[26] |
Chakrabarti J, Holokai L, Syu L, et al. Mouse-Derived Gastric Organoid and Immune Cell Co-culture for the Study of the Tumor Microenvironment[J]. Methods Mol Biol, 2018, 1817:157-168. doi: 10.1007/978-1-4939-8600-2_16.
doi: 10.1007/978-1-4939-8600-2_16
pmid: 29959712
|
[27] |
Fiorini E, Veghini L, Corbo V. Modeling Cell Communication in Cancer With Organoids: Making the Complex Simple[J]. Front Cell Dev Biol, 2020, 8:166. doi: 10.3389/fcell.2020.00166.
doi: 10.3389/fcell.2020.00166
pmid: 32258040
|
[28] |
Kenny HA, Krausz T, Yamada SD, et al. Use of a novel 3D culture model to elucidate the role of mesothelial cells, fibroblasts and extra-cellular matrices on adhesion and invasion of ovarian cancer cells to the omentum[J]. Int J Cancer, 2007, 121(7):1463-1472. doi: 10.1002/ijc.22874.
doi: 10.1002/ijc.22874
|
[29] |
Torabi S, Li L, Grabau J, et al. Cassie-Baxter Surfaces for Reversible, Barrier-Free Integration of Microfluidics and 3D Cell Culture[J]. Langmuir, 2019, 35(32):10299-10308. doi: 10.1021/acs.langmuir.9b01163.
doi: 10.1021/acs.langmuir.9b01163
|
[30] |
Xu R, Zhou X, Wang S, et al. Tumor organoid models in precision medicine and investigating cancer-stromal interactions[J]. Pharmacol Ther, 2021, 218:107668. doi: 10.1016/j.pharmthera.2020.107668.
doi: 10.1016/j.pharmthera.2020.107668
|