[1] |
Tang Y, Huang T, Pan Y. Correlation Analysis of Vaspin Gene Polymorphisms and Polycystic Ovary Syndrome Based on Intelligent Medicine[J]. Comput Intell Neurosci, 2022, 2022:6154233. doi: 10.1155/2022/6154233.
doi: 10.1155/2022/6154233
|
[2] |
Zhang J, Bao Y, Zhou X, et al. Polycystic ovary syndrome and mitochondrial dysfunction[J]. Reprod Biol Endocrinol, 2019, 17(1):67. doi: 10.1186/s12958-019-0509-4.
doi: 10.1186/s12958-019-0509-4
|
[3] |
Moore AM, Lohr DB, Coolen LM, et al. Prenatal Androgen Exposure Alters KNDy Neurons and Their Afferent Network in a Model of Polycystic Ovarian Syndrome[J]. Endocrinology, 2021, 162(11):bqab158. doi: 10.1210/endocr/bqab158.
doi: 10.1210/endocr/bqab158
|
[4] |
Yan X, Yuan C, Zhao N, et al. Prenatal androgen excess enhances stimulation of the GNRH pulse in pubertal female rats[J]. J Endocrinol, 2014, 222(1):73-85. doi: 10.1530/JOE-14-0021.
doi: 10.1530/JOE-14-0021
pmid: 24829217
|
[5] |
Silva MS, Prescott M, Campbell RE. Ontogeny and reversal of brain circuit abnormalities in a preclinical model of PCOS[J]. JCI Insight, 2018, 3(7):e99405. doi: 10.1172/jci.insight.99405.
doi: 10.1172/jci.insight.99405
|
[6] |
Caldwell A, Edwards MC, Desai R, et al. Neuroendocrine androgen action is a key extraovarian mediator in the development of polycystic ovary syndrome[J]. Proc Natl Acad Sci U S A, 2017, 114(16):E3334-E3343. doi: 10.1073/pnas.1616467114.
doi: 10.1073/pnas.1616467114
|
[7] |
Abbott DH, Vepraskas SH, Horton TH, et al. Accelerated Episodic Luteinizing Hormone Release Accompanies Blunted Progesterone Regulation in PCOS-like Female Rhesus Monkeys (Macaca Mulatta) Exposed to Testosterone during Early-to-Mid Gestation[J]. Neuroendocrinology, 2018, 107(2):133-146. doi: 10.1159/000490570.
doi: 10.1159/000490570
pmid: 29949806
|
[8] |
Sanchez-Garrido MA, Tena-Sempere M. Metabolic dysfunction in polycystic ovary syndrome: Pathogenic role of androgen excess and potential therapeutic strategies[J]. Mol Metab, 2020, 35:100937. doi: 10.1016/j.molmet.2020.01.001.
doi: 10.1016/j.molmet.2020.01.001
|
[9] |
Witchel SF, Plant TM. Intertwined reproductive endocrinology: Puberty and polycystic ovary syndrome[J]. Curr Opin Endocr Metab Res, 2020, 14:127-136. doi: 10.1016/j.coemr.2020.07.004.
doi: 10.1016/j.coemr.2020.07.004
pmid: 33102929
|
[10] |
Herde MK, Iremonger KJ, Constantin S, et al. GnRH neurons elaborate a long-range projection with shared axonal and dendritic functions[J]. J Neurosci, 2013, 33(31):12689-12697. doi: 10.1523/JNEUROSCI.0579-13.2013.
doi: 10.1523/JNEUROSCI.0579-13.2013
pmid: 23904605
|
[11] |
Lehman MN, He W, Coolen LM, et al. Does the KNDy Model for the Control of Gonadotropin-Releasing Hormone Pulses Apply to Monkeys and Humans?[J]. Semin Reprod Med, 2019, 37(2):71-83. doi: 10.1055/s-0039-3400254.
doi: 10.1055/s-0039-3400254
pmid: 31847027
|
[12] |
Navarro VM. Metabolic regulation of kisspeptin - the link between energy balance and reproduction[J]. Nat Rev Endocrinol, 2020, 16(8):407-420. doi: 10.1038/s41574-020-0363-7.
doi: 10.1038/s41574-020-0363-7
pmid: 32427949
|
[13] |
Brown R, Khant Aung Z, Phillipps HR, et al. Acute Suppression of LH Secretion by Prolactin in Female Mice Is Mediated by Kisspeptin Neurons in the Arcuate Nucleus[J]. Endocrinology, 2019, 160(5):1323-1332. doi: 10.1210/en.2019-00038.
doi: 10.1210/en.2019-00038
pmid: 30901026
|
[14] |
Cheng G, Coolen LM, Padmanabhan V, et al. The kisspeptin/neurokinin B/dynorphin (KNDy) cell population of the arcuate nucleus: sex differences and effects of prenatal testosterone in sheep[J]. Endocrinology, 2010, 151(1):301-311. doi: 10.1210/en.2009-0541.
doi: 10.1210/en.2009-0541
pmid: 19880810
|
[15] |
Gorkem U, Togrul C, Arslan E, et al. Is there a role for kisspeptin in pathogenesis of polycystic ovary syndrome?[J]. Gynecol Endocrinol, 2018, 34(2):157-160. doi: 10.1080/09513590.2017.1379499.
doi: 10.1080/09513590.2017.1379499
pmid: 28933574
|
[16] |
Osuka S, Iwase A, Nakahara T, et al. Kisspeptin in the Hypothalamus of 2 Rat Models of Polycystic Ovary Syndrome[J]. Endocrinology, 2017, 158(2):367-377. doi: 10.1210/en.2016-1333.
doi: 10.1210/en.2016-1333
pmid: 27983870
|
[17] |
Iwata K, Kunimura Y, Matsumoto K, et al. Effect of androgen on Kiss1 expression and luteinizing hormone release in female rats[J]. J Endocrinol, 2017, 233(3):281-292. doi: 10.1530/JOE-16-0568.
doi: 10.1530/JOE-16-0568
|
[18] |
Abbara A, Dhillo WS. Targeting Elevated GnRH Pulsatility to Treat Polycystic Ovary Syndrome[J]. J Clin Endocrinol Metab, 2021, 106(10):e4275-e4277. doi: 10.1210/clinem/dgab422.
doi: 10.1210/clinem/dgab422
pmid: 34117885
|
[19] |
Szeliga A, Podfigurna A, Bala G, et al. Kisspeptin and neurokinin B analogs use in gynecological endocrinology: where do we stand?[J]. J Endocrinol Invest, 2020, 43(5):555-561. doi: 10.1007/s40618-019-01160-0.
doi: 10.1007/s40618-019-01160-0
pmid: 31838714
|
[20] |
Gutiérrez-Pascual E, Martínez-Fuentes AJ, Pinilla L, et al. Direct pituitary effects of kisspeptin: activation of gonadotrophs and somatotrophs and stimulation of luteinising hormone and growth hormone secretion[J]. J Neuroendocrinol, 2007, 19(7):521-530. doi: 10.1111/j.1365-2826.2007.01558.x.
doi: 10.1111/j.1365-2826.2007.01558.x
pmid: 17532794
|
[21] |
Grachev P, Li XF, Kinsey-Jones JS, et al. Suppression of the GnRH pulse generator by neurokinin B involves a κ-opioid receptor-dependent mechanism[J]. Endocrinology, 2012, 153(10):4894-4904. doi: 10.1210/en.2012-1574.
doi: 10.1210/en.2012-1574
pmid: 22903614
|
[22] |
Weems PW, Coolen LM, Hileman SM, et al. Evidence That Dynorphin Acts Upon KNDy and GnRH Neurons During GnRH Pulse Termination in the Ewe[J]. Endocrinology, 2018, 159(9):3187-3199. doi: 10.1210/en.2018-00435.
doi: 10.1210/en.2018-00435
pmid: 30016419
|
[23] |
Goodman RL, Hileman SM, Nestor CC, et al. Kisspeptin, neurokinin B, and dynorphin act in the arcuate nucleus to control activity of the GnRH pulse generator in ewes[J]. Endocrinology, 2013, 154(11):4259-4269. doi: 10.1210/en.2013-1331.
doi: 10.1210/en.2013-1331
pmid: 23959940
|
[24] |
Mimouni N, Paiva I, Barbotin AL, et al. Polycystic ovary syndrome is transmitted via a transgenerational epigenetic process[J]. Cell Metab, 2021, 33(3):513-530. doi: 10.1016/j.cmet.2021.01.004.
doi: 10.1016/j.cmet.2021.01.004
pmid: 33539777
|
[25] |
Abbott DH, Dumesic DA, Levine JE. Hyperandrogenic origins of polycystic ovary syndrome - implications for pathophysiology and therapy[J]. Expert Rev Endocrinol Metab, 2019, 14(2):131-143. doi: 10.1080/17446651.2019.1576522.
doi: 10.1080/17446651.2019.1576522
pmid: 30767580
|
[26] |
Cui P, Ma T, Tamadon A, et al. Hypothalamic DNA methylation in rats with dihydrotestosterone-induced polycystic ovary syndrome: effects of low-frequency electro-acupuncture[J]. Exp Physiol, 2018, 103(12):1618-1632. doi: 10.1113/EP087163.
doi: 10.1113/EP087163
pmid: 30204276
|
[27] |
Febri RR, Hestiantoro A. DNA methylation of the androgen receptor gene promoter in the granulosa cells of polycystic ovary syndrome patients[J]. J Phy Conference Series, 2018, 1073(3):032078. doi: 10.1088/1742-6596/1073/3/032078.
doi: 10.1088/1742-6596/1073/3/032078
|
[28] |
Javier B, Magdalena B, Roberto S, et al. Acute and fulminant hepatitis induced by flutamide: case series report and review of the literature[J]. Ann Hepatol, 2011, 10(1):93-98. doi: 10.1016/S1665-2681(19)31595-9.
doi: 10.1016/S1665-2681(19)31595-9
pmid: 21301018
|
[29] |
Echiburú B, Milagro F, Crisosto N, et al. DNA methylation in promoter regions of genes involved in the reproductive and metabolic function of children born to women with PCOS[J]. Epigenetics, 2020, 15(11):1178-1194. doi: 10.1080/15592294.2020.1754674.
doi: 10.1080/15592294.2020.1754674
|
[30] |
Fraser GL, Obermayer-Pietsch B, Laven J, et al. Randomized Controlled Trial of Neurokinin 3 Receptor Antagonist Fezolinetant for Treatment of Polycystic Ovary Syndrome[J]. J Clin Endocrinol Metab, 2021, 106(9):e3519-e3532. doi: 10.1210/clinem/dgab320.
doi: 10.1210/clinem/dgab320
pmid: 34000049
|
[31] |
Sucquart IE, Nagarkar R, Edwards MC, et al. Neurokinin 3 Receptor Antagonism Ameliorates Key Metabolic Features in a Hyperandrogenic PCOS Mouse Model[J]. Endocrinology, 2021, 162(5):bqab020. doi: 10.1210/endocr/bqab020.
doi: 10.1210/endocr/bqab020
|