[1] |
Nirupama R, Divyashree S, Janhavi P, et al. Preeclampsia: Pathophysiology and management[J]. J Gynecol Obstet Hum Reprod, 2021, 50(2):101975. doi: 10.1016/j.jogoh.2020.101975.
doi: 10.1016/j.jogoh.2020.101975
|
[2] |
Meng ML, Frere Z, Fuller M, et al. Maternal Cardiovascular Morbidity Events Following Preeclampsia: A Retrospective Cohort Study[J]. Anesth Analg, 2023, 136(4):728-737. doi: 10.1213/ANE.0000000000006310.
doi: 10.1213/ANE.0000000000006310
|
[3] |
Kong L, Chen X, Liang Y, et al. Association of Preeclampsia and Perinatal Complications With Offspring Neurodevelopmental and Psychiatric Disorders[J]. JAMA Netw Open, 2022, 5(1):e2145719. doi: 10.1001/jamanetworkopen.2021.45719.
doi: 10.1001/jamanetworkopen.2021.45719
|
[4] |
Chappell LC, Cluver CA, Kingdom J, et al. Pre-eclampsia[J]. Lancet, 2021, 398(10297):341-354. doi: 10.1016/S0140-6736(20)32335-7.
doi: 10.1016/S0140-6736(20)32335-7
|
[5] |
Farrell A, Alahari S, Ermini L, et al. Faulty oxygen sensing disrupts angiomotin function in trophoblast cell migration and predisposes to preeclampsia[J]. JCI Insight, 2019, 4(8):e127009. doi: 10.1172/jci.insight.127009.
doi: 10.1172/jci.insight.127009
|
[6] |
Bakrania BA, Spradley FT, Drummond HA, et al. Preeclampsia: Linking Placental Ischemia with Maternal Endothelial and Vascular Dysfunction[J]. Compr Physiol, 2020, 11(1):1315-1349. doi: 10.1002/cphy.c200008.
doi: 10.1002/cphy.c200008
pmid: 33295016
|
[7] |
Ren Z, Cui N, Zhu M, et al. Placental growth factor reverses decreased vascular and uteroplacental MMP-2 and MMP-9 and increased MMP-1 and MMP-7 and collagen types I and IV in hypertensive pregnancy[J]. Am J Physiol Heart Circ Physiol, 2018, 315(1):H33-H47. doi: 10.1152/ajpheart.00045.2018.
doi: 10.1152/ajpheart.00045.2018
|
[8] |
Nakahara A, Nair S, Ormazabal V, et al. Circulating Placental Extracellular Vesicles and Their Potential Roles During Pregnancy[J]. Ochsner J, 2020, 20(4):439-445. doi: 10.31486/toj.20.0049.
doi: 10.31486/toj.20.0049
|
[9] |
Tsur A, Kalish F, Burgess J, et al. Pravastatin improves fetal survival in mice with a partial deficiency of heme oxygenase-1[J]. Placenta, 2019, 75:1-8. doi: 10.1016/j.placenta.2018.11.001.
doi: S0143-4004(18)30657-X
pmid: 30712660
|
[10] |
Gatford KL, Andraweera PH, Roberts CT, et al. Animal Models of Preeclampsia: Causes, Consequences, and Interventions[J]. Hypertension, 2020, 75(6):1363-1381. doi: 10.1161/HYPERTENSIONAHA.119.14598.
doi: 10.1161/HYPERTENSIONAHA.119.14598
pmid: 32248704
|
[11] |
Sasagawa T, Nagamatsu T, Morita K, et al. HIF-2α, but not HIF-1α, mediates hypoxia-induced up-regulation of Flt-1 gene expression in placental trophoblasts[J]. Sci Rep, 2018, 8(1):17375. doi: 10.1038/s41598-018-35745-1.
doi: 10.1038/s41598-018-35745-1
pmid: 30478339
|
[12] |
Tomimatsu T, Mimura K, Matsuzaki S, et al. Preeclampsia: Maternal Systemic Vascular Disorder Caused by Generalized Endothelial Dysfunction Due to Placental Antiangiogenic Factors[J]. Int J Mol Sci, 2019, 20(17):4246. doi: 10.3390/ijms20174246.
doi: 10.3390/ijms20174246
|
[13] |
Sutton EF, Gemmel M, Powers RW. Nitric oxide signaling in pregnancy and preeclampsia[J]. Nitric Oxide, 2020, 95:55-62. doi: 10.1016/j.niox.2019.11.006.
doi: S1089-8603(19)30194-6
pmid: 31852621
|
[14] |
Nunes PR, Gomes VJ, Sandrim VC, et al. Effects of vitamin D-induced supernatant of placental explants from preeclamptic women on oxidative stress and nitric oxide bioavailability in human umbilical vein endothelial cells[J]. Braz J Med Biol Res, 2021, 54(8):e11073. doi: 10.1590/1414-431X2020e11073.
doi: 10.1590/1414-431X2020e11073
|
[15] |
Papúchová H, Meissner TB, Li Q, et al. The Dual Role of HLA-C in Tolerance and Immunity at the Maternal-Fetal Interface[J]. Front Immunol, 2019, 10:2730. doi: 10.3389/fimmu.2019.02730.
doi: 10.3389/fimmu.2019.02730
pmid: 31921098
|
[16] |
Zhang J, Dunk CE, Shynlova O, et al. TGFb1 suppresses the activation of distinct dNK subpopulations in preeclampsia[J]. EBioMedicine, 2019, 39:531-539. doi: 10.1016/j.ebiom.2018.12.015.
doi: S2352-3964(18)30592-9
pmid: 30579870
|
[17] |
Salvany-Celades M, van der Zwan A, Benner M, et al. Three Types of Functional Regulatory T Cells Control T Cell Responses at the Human Maternal-Fetal Interface[J]. Cell Rep, 2019, 27(9):2537-2547.e5. doi: 10.1016/j.celrep.2019.04.109.
doi: S2211-1247(19)30599-6
pmid: 31141680
|
[18] |
Zhai R, Liu Y, Tong J, et al. Empagliflozin Ameliorates Preeclampsia and Reduces Postpartum Susceptibility to Adriamycin in a Mouse Model Induced by Angiotensin Receptor Agonistic Autoantibodies[J]. Front Pharmacol, 2022, 13:826792. doi: 10.3389/fphar.2022.826792.
doi: 10.3389/fphar.2022.826792
|
[19] |
Žák P, Souče M. Correlation of tumor necrosis factor alpha, interleukin 6 and interleukin 10 with blood pressure, risk of preeclampsia and low birth weight in gestational diabetes[J]. Physiol Res, 2019, 68(3):395-408. doi: 10.33549/physiolres.934002.
doi: 10.33549/physiolres.934002
pmid: 30904009
|
[20] |
Cunningham MW, Jayaram A, Deer E, et al. Tumor necrosis factor alpha (TNF-α) blockade improves natural killer cell (NK) activation, hypertension, and mitochondrial oxidative stress in a preclinical rat model of preeclampsia[J]. Hypertens Pregnancy, 2020, 39(4):399-404. doi: 10.1080/10641955.2020.1793999.
doi: 10.1080/10641955.2020.1793999
|
[21] |
Yagel S, Cohen SM, Goldman-Wohl D. An integrated model of preeclampsia: a multifaceted syndrome of the maternal cardiovascular-placental-fetal array[J]. Am J Obstet Gynecol, 2022, 226(2S):S963-S972. doi: 10.1016/j.ajog.2020.10.023.
doi: 10.1016/j.ajog.2020.10.023
|
[22] |
Ghossein-Doha C, Spaanderman ME, Al Doulah R, et al. Maternal cardiac adaptation to subsequent pregnancy in formerly pre-eclamptic women according to recurrence of pre-eclampsia[J]. Ultrasound Obstet Gynecol, 2016, 47(1):96-103. doi: 10.1002/uog.15752.
doi: 10.1002/uog.15752
pmid: 26395883
|
[23] |
Masini G, Foo LF, Tay J, et al. Preeclampsia has two phenotypes which require different treatment strategies[J]. Am J Obstet Gynecol, 2022, 226(2S):S1006-S1018. doi: 10.1016/j.ajog.2020.10.052.
doi: 10.1016/j.ajog.2020.10.052
|
[24] |
Than NG, Romero R, Tarca AL, et al. Integrated Systems Biology Approach Identifies Novel Maternal and Placental Pathways of Preeclampsia[J]. Front Immunol, 2018, 9:1661. doi: 10.3389/fimmu.2018.01661.
doi: 10.3389/fimmu.2018.01661
pmid: 30135684
|
[25] |
Turco MY, Gardner L, Hughes J, et al. Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium[J]. Nat Cell Biol, 2017, 19(5):568-577. doi: 10.1038/ncb3516.
doi: 10.1038/ncb3516
pmid: 28394884
|
[26] |
Sheridan MA, Fernando RC, Gardner L, et al. Establishment and differentiation of long-term trophoblast organoid cultures from the human placenta[J]. Nat Protoc, 2020, 15(10):3441-3463. doi: 10.1038/s41596-020-0381-x.
doi: 10.1038/s41596-020-0381-x
pmid: 32908314
|